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Abstract. Swarm intelligence and bio-inspired algorithms form a lopi¢ in the developments of new algorithms

inspired by nature. These nature-inspired metaheuritarithms can be based on swarm intelligence, biological
systems, physical and chemical systems. Therefore, tHgeétlms can be called swarm-intelligence-based,
bio-inspired, physics-based and chemistry-based, dépgrah the sources of inspiration. Though not all of

them are efficient, a few algorithms have proved to be vergiefit and thus have become popular tools for
solving real-world problems. Some algorithms are insudfitlly studied. The purpose of this review is to present
a relatively comprehensive list of all the algorithms in therature, so as to inspire further research.
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1 INTRODUCTION list of algorithms. Finally, Section 4 concludes with

L some suggestions.
Real-world optimization problems are often very chal- 99

lenging to solve, and many applications have to deal with
NP-hard problems. To solve such problems, optimization 2 SOURCES OF INSPIRATION

tools have to be used, though there is no guarantee thakire has inspired many researchers in many ways and
the optimal solution can be obtained. In fact, for NPy s is a rich source of inspiration. Nowadays, most new
problems, there are no efficient algorithms at all. Aggorithms are nature-inspired, because they have been
a result, many problems have to be solved by trial andeyeloped by drawing inspiration from nature. Even with
errors using various optimization techniques. In additionne emphasis on the source of inspiration, we can still
new algorithms have been developed to see if they cafyye different levels of classifications, depending on how
cope with these challenging optimization problems.  getaijls and how many subsources we will wish to use.
Among these new algorithms, many algorithms suckq; simpjicity, we will use the highest level sources such
as particle swarm optimization, cuckoo search and firefly biology, physics or chemistry.
algorithm, have gained popularity due to their high ', the most generic term, the main source of inspira-
efficiency. In the current literature, there are about 4Q, js Nature. Therefore, almost all new algorithms can
different algorithms. It is really a challenging task topq referred to as nature-inspired. By far the majority
classify these algorithms systematically. Obviously, thg¢ natyre-inspired algorithms are based on some suc-
classifications can largely depend on the criteria, anghssfy| characteristics of biological system. Therefore,
there is no easy guideline to set out the criteria in thgye |argest fraction of nature-inspired algorithms are
literature. As criteria may vary, detailed Class'f'cat'on%iology-inspired, or bio-inspired for short.
can be an impossible task for a research paper. However,Among bio-inspired algorithms, a special class of

in this short paper, we only attempt to focus on ongqqithms have been developed by drawing inspiration
aspect of the characteristics of these algorithms. Tha)y swarm intelligence. Therefore, some of the bio-
is, we will focus on the source of inspiration wheninghireq algorithms can be called swarm-intelligence-
developing algorithms. , ) , based. In fact, algorithms based on swarm intelligence
Ther.efore,. the rest of this paper is Orga”'z_ed_ 83re among the most popular. Good examples are ant
follows: Section 2 analyzes the sources of inspiration,giony optimization [15], particle swarm optimization
while Section 3 provides a brief and yet comprehensw&s], cuckoo search [74], bat algorithm [78], and firefly
Received 2?7 algorithm [69], [20].
Accepted 15 July 2013 Obviously, not all algorithms were based on biological
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systems. Many algorithms have been developed by usimgnsidered as unintelligent, the whole system of multiple
inspiration from physical and chemical systems. Somagents may show some self-organization behaviour and
may even be based on music [23]. In the rest athus can behave like some sort of collective intelligence.
paper, we will briefly divide all algorithms into different Many algorithms have been developed by drawing inspi-
categories, and we do not claim that this categorizatiomtion from swarm-intelligence systems in nature.

is unique. This is a good attempt to provide sufficiently All Sl-based algorithms use multi-agents, inspired

detailed references. by the collective behaviour of social insects, like ants,
termites, bees, and wasps, as well as from other animal
3 CLASSIFICATION OF ALGORITHMS societies like flocks of birds or fish. A list of swarm intel-

ligence algorithms is presented in Table 1. The classical
Based on the above discussions, we can divide 3)larticle swarm optimization (PSO) uses the swarming
existing algorithms into four major categories: swarmpehaviour of fish and birds, while firefly algorithm
intelligence (SI) based, bio-inspired (but not Sl-based)fFA) uses the flashing behaviour of swarming fireflies.
physics/chemistry-based, and others. We will summarizguckoo search (CS) is based on the brooding parasitism
them briefly in the rest of this paper. However, wepgf some cuckoo species, while bat algorithm uses the
will focus here on the relatively new algorithms. Well-echolocation of foraging bats. Ant colony optimization
established algorithms such as genetic algorithms are gges the interaction of social insects (e.g., ants), while
well known that there is no need to introduce them inhe class of bee algorithms are all based on the foraging
this brief paper. behaviour of honey bees.

It is worth pointing out the classifications here are Sl-based a|g0rithms are among the most popular and
not unique as some algorithms can be classified intgidely used. There are many reasons for such popularity,
different categories at the same time. Loosely speakingpne of the reasons is that Sl-based algorithms usually
classifications depend largely on what the focus O$haring information among multiple agents, so that self-
emphasis and the perspective may be. For example,dfganization, co-evolution and learning during iterasion
the focus and perspective are about the trajectory of thgay help to provide the high efficiency of most Si-based
search path, algorithms can be classified as trajectorjigorithms. Another reason is that multiple agent can
based and population-based. Simulated annealing & parallelized easily so that large-scale optimization

a good example of trajectory-based algorithms, whilgecomes more practical from the implementation point
particle swarm optimization and firefly algorithms aregf view.

population-based algorithms. If our emphasis is placed
on the interaction of the multiple agents, algorithms caB.2 Bio-inspired, but not Sl based
be classified as attraction-based or non-attraction-basedObviously

Firefly algorithm (FA) is a good example of attraction-gj s of algorithms, called bio-inspired algorithms. In
based algorithms because FA uses the attraction of ”g*gct bio-inspired algorithms form a majority of all

and attractiveness of fireflies, while genetic algorithmﬁature-inspired algorithms. From the set theory point of
are non-attraction-based since there is no explicit attrag;.,, s|-pased algorithms are a subset of bio-inspired

tion used._On the ot_her hand, if_ the emphasis itc’ _place_d %{I"gorithms, while bio-inspired algorithms are a subset
the updating equations, algorithms can be divided intQe nature-inspired algorithms. That is

rule-based and equation-based. For example, particle

swarm optimization and cuckoo search are equation- Sl-based- bio-inspiredc nature-inspired

based algorithms because both use explicit updating

equations, while genetic algorithms do not have explicfeonversely, not all nature-inspired algorithms are bio-
equations for crossover and mutation. However, in thi§ispired, and some are purely physics and chemistry
case, the classifications are not unique. For exampleased algorithms as we will see below.

firefly algorithm uses three explicit rules and these three Many bio-inspired algorithms do not use directly the

rules can be converted explicitly into a single upda[ingwarming behaviour. Therefore, it is better to call them
equation which is nonlinear [69], [20]. This clearly bio-inspired, but not Si-based. For example, genetic
shows that classifications depend on the actual perspédgorithms are bio-inspired, but not Sl-based. However,
tive and motivations. Therefore, the classifications herié is not easy to classify certain algorithms such as
are just one possible attempt, though the emphasis déferential evolution (DE). Strictly speaking, DE is

Sl-based algorithms belong to a wider

placed on the sources of inspiration. not bio-inspired because there is no direct link to any
) ) biological behaviour. However, as it has some similarity
3.1 Swarm intelligence based to genetic algorithms and also has a key word ‘evo-

Swarm intelligence (SI) concerns the collectivejution’, we tentatively put it in the category of bio-
emerging behaviour of multiple, interacting agents whdinspired algorithms. These relevant algorithms are listed
follow some simple rules. While each agent may bén Table 1.
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For example, the flower algorithm [72], or flowerwhich attempts to generate better solutions (a population
pollination algorithm [76], developed by Xin-She Yangof n solutions) at iterationt + 1 from the current
in 2012 is a bio-inspired algorithm, but it is not a Sl-iterationt and its solution set;, (i = 1,2,...,n). This
based algorithm because flower algorithm tries to mimitterative algorithmic engine (i.e., algorithr) also uses
the pollination characteristics of flowering plants andome algorithm-dependent parametéps, ..., p;,) and
the associated flower consistency of some pollinatingome random variablegws, ..., w,,). This schematic
insects. representation can include all the algorithms listed in
. . this paper. However, this does not mean it is easy
3.3 Physics and Chemistry Based to analyze the behaviour of an algorithm because this
Not all metaheuristic algorithms are bio-inspiredformula can be highly nonlinear. Though Markov chains
because their sources of inspiration often come froaheory and dynamical system theory can help to provide
physics and chemistry. For the algorithms that are n@ome limited insight into some algorithms, the detailed
bio-inspired, most have been developed by mimickingnathematical framework is still yet to be developed.
certain physical and/or chemical laws, including elec- On the other hand, it is worth pointing out that studies
trical charges, gravity, river systems, etc. As differenshow that some algorithms are better than others. It is
natural systems are relevant to this category, we can evefill not quite understood why. However, if one looks
subdivide these into many subcategories which is neft the intrinsic part of algorithm design closely, some
necessary. A list of these algorithms is given in Table la|gorithms are badly designed, which lack certain basic
Schematically, we can represent the relationship &fapabilities such as the mixing and diversity among
physics and chemistry based algorithms as the followshe solutions. In contrast, good algorithms have both
i eni i mixing and diversity control so that the algorithm can
Physics algorithms # bio-inspired algorithms explo?e the vast segrch space efficiently, Wghile converge
Chemistry algorithm relatively quickly when necessary. Good algorithms such
as particle swarm optimization, differential evolution,
Though physics and chemistry are two different subjectgyckoo search and firefly algorithms all have both global

however, it is not useful to subdivide this subcategorgearch and intensive local search capabilities, which may
further into physics-based and chemistry. After all, manye partly why they are so efficient.

fundamental laws are the same. So we simply group
them as physics and chemistry based algorithms. 4 CONCLUSION

3.4 Other algorithms The sources of inspiration for algorithm development
When researchers develop new algorithms, somge very diverse, and consequently the algorithms are
may look for inspiration away from nature. Con-equally diverse. In this paper, we have briefly summa-
sequently, some algorithms are not bio-inspired ofized all the algorithms into 4 categories. This can be a
physics/chemistry-based, it is sometimes difficult to pu¢omprehensive source of information to form a basis or
some algorithms in the above three categories, becaus@rting point for further research. It is worth pointing
these algorithms have been developed by using variogsit that the classifications may not be unique, and this
characteristics from different sources, such as sociglresent table is just for the purpose of information only.
emotional, etc. In this case, it is better to put them in Based on many studies in the literature, some algo-
the other category, as listed in Table 1 rithms are more efficient and popular than others. It
3.5 Some Remarks would be helpful to carry out more studies, but this
does not mean that we should encourage researchers to

Though the sources of inspiration are very divers%evelop more algorithms such as grass, sky, or ocean
the algorithm designed from such inspiration may b%llgorithms.

equally <_:iiverse. Hovx_/ever, care should be taken, as ”“eCurrently, there may be some confusion and distrac-
novelty is a rare thing. For example, there are aboyjn i the research of metaheuristic algorithms. On the
28,000 living species of fish, this cannot mean thabne hangd, researchers have focused on important novel
researchers should develop 28000 different algorithmge,s for solving difficult problems. On the other hand,
based on fish. Therefore, one cannot call their algorithmg, e researchers artificially invent new algorithms for
trout algorithm, squid algorithm, ..., shark algorithm. e sake of publications with little improvement and
In essence, researchers try to look for some efficieply novelty. Researchers should be encouraged to carry
formulas as summarized by Yang [73] as the followingy; truly novel and important studies that are really
generic scheme: useful to solve hard problems. Therefore, our aim is to
inspire more research to gain better insight into efficient
algorithms and solve large-scale real-world problems.

€ nature-inspired algorithms

(21, 29, ..., 2] T = A{[xl, Ty ey Tp)ts s
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Swarm intelligence based algorithms

Bio-inspired (not Sl-based) algorithms

Algorithm Author Reference| Algorithm Author Reference
Accelerated PSO Yang et al. [69], [71] | Atmosphere clouds model Yan and Hao [67]
Ant colony optimization Dorigo [15] Biogeography-based optimization | Simon [56]
Artificial bee colony Karaboga and Basturk [31] Brain Storm Optimization Shi [55]
Bacterial foraging Passino [46] Differential evolution Storn and Price [57]
Bacterial-GA Foraging Chen et al. [6] Dolphin echolocation Kaveh and Farhoudi| [33]
Bat algorithm Yang [78] Japanese tree frogs calling Hernandez and Blum [28]
Bee colony optimization Teodorovic and Dell'Orco | [62] Eco-inspired evolutionary algorithm Parpinelli and Lopes| [45]
Bee system Lucic and Teodorovic [40] Egyptian Vulture Sur et al. [59]
BeeHive Wedde et al. [65] Fish-school Search Lima et al. [14], [3]
Wolf search Tang et al. [61] Flower pollination algorithm Yang [72], [76]
Bees algorithms Pham et al. [47] Gene expression Ferreira [19]
Bees swarm optimization Drias et al. [16] Great salmon run Mozaffari [43]
Bumblebees Comellas and Martinez [12] Group search optimizer He et al. [26]
Cat swarm Chu et al. [7] Human-Inspired Algorithm Zhang et al. [80]
Consultant-guided search lordache [29] Invasive weed optimization Mehrabian and Lucas [42]
Cuckoo search Yang and Deb [74] Marriage in honey bees Abbass [1]
Eagle strategy Yang and Deb [75] OptBees Maia et al. [41]
Fast bacterial swarming algorithmChu et al. [8] Paddy Field Algorithm Premaratne et al. [48]
Firefly algorithm Yang [70] Roach infestation algorithm Havens [25]
Fish swarm/school Li et al. [39] Queen-bee evolution Jung [30]
Good lattice swarm optimization| Su et al. [58] Shuffled frog leaping algorithm Eusuff and Lansey | [18]
Glowworm swarm optimization | Krishnanand and Ghose [37], [38] | Termite colony optimization Hedayatzadeh et al. | [27]
Hierarchical swarm model Chen et al. [5] Physics and Chemistry based algorithms
Krill Herd Gandomi and Alavi [22] Big bang-big Crunch Zandi et al. [79]
Monkey search Mucherino and Seref [44] Black hole Hatamlou [24]
Particle swarm algorithm Kennedy and Eberhart [35] Central force optimization Formato [21]
Virtual ant algorithm Yang [77] Charged system search Kaveh and Talatahar| [34]
Virtual bees Yang [68] Electro-magnetism optimization Cuevas et al. [13]
Weightless Swarm Algorithm Ting et al. [63] Galaxy-based search algorithm Shah-Hosseini [53]
Other algorithms Gravitational search Rashedi et al. [50]
Anarchic society optimization Shayeghi and Dadashpour| [54] Harmony search Geem et al. [23]
Artificial cooperative search Civicioglu [9] Intelligent water drop Shah-Hosseini [52]
Backtracking optimization search Civicioglu [11] River formation dynamics Rabanal et al. [49]
Differential search algorithm Civicioglu [10] Self-propelled particles Vicsek [64]
Grammatical evolution Ryan et al. [51] Simulated annealing Kirkpatrick et al. [36]
Imperialist competitive algorithm| Atashpaz-Gargari and Lucds[2] Stochastic difusion search Bishop [4]
League championship algorithm| Kashan [32] Spiral optimization Tamura and Yasuda | [60]
Social emotional optimization Xu et al. [66] Water cycle algorithm Eskandar et al. [17]

H3LSIH ‘1S3HG ‘YALSId ONVA ‘H3LSIH

Table 1. A list of algorithms
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