Algorithms for searching graphs and game trees

Przemysław Klęsk

Department of Artificial Intelligence and Applied Methematics Faculty of Computer Science and Information Technology West Pomeranian University of Szczecin, Poland pklesk@zut.edu.pl

Table of contents

- 1 On searching in general...
- Searching graphs
 - Open and closed sets
 - Breadth-first and depth-first search
 - Dijkstra's algorithm
 - Best-first search
 - A*
 - IDA*
- 3 Searching game trees
 - Min-Max
 - α – β pruning

Table of contents

- On searching in general...
- Searching graphs
 - Open and closed sets
 - Breadth-first and depth-first search
 - Dijkstra's algorithm
 - Best-first search
 - A*
 - IDA*
- Searching game trees
 - Min-Max
 - α – β pruning

Graphs within AI

 Graphs: geographical, mazes, navigational...but also — puzzles, riddles that can be represented as a graph, e.g.: sudoku, sliding puzzle, Rubik's cube, solitaires, Rummikub, packing problems, etc.

- Vertices states of a puzzle, edges possible moves / manipulations transitting a given state into another.
- Problem of searching graph: Given an initial graph state, the task is to find a path of transitions (if exists) to a goal state. Additionally, if stated in the task, the goal is to find the minimum path.

Searching — what is needed?

- Generation of descendants What new states (direct descendants) can be generated from a given state?
- **Identification** What identifiers (string or integer representations) can be assigned to states, so that the same state is not visited multiple times unnecessarily?
- **1 Termination** Is given state a terminal? I.e. a solution state (graphs) or a win state (game trees)?
- Heuristics (optional) An estimation how far a state is from the solution (graphs), or an evaluation whether the state represents some advantage for the maximizing or the minimizing player (game trees).

Table of contents

- On searching in general...
- Searching graphs
 - Open and closed sets
 - Breadth-first and depth-first search
 - Dijkstra's algorithm
 - Best-first search
 - A*
 - IDA*
- 3 Searching game trees
 - Min-Max
 - α−β pruning

Open and closed sets

- Most graph searching algorithms can be formulated with use of two data sets, named by convention as: Open and Closed.
- At any moment of an operating algorithm, the Closed set contains states that have been already visited, the Open set contains states that await to be visited.
- Awaiting states have been generated as descendants (graph neighbors) of states visited earlier.
- Open and Closed sets can be implemented using various data structures depending on the wanted algorithmic behaviour and efficiency.
- What kind of algorithm we deal with is essentially decided by the order according to which states are polled (taken and removed) from Open set for further processing.

Table of contents

- On searching in general...
- Searching graphs
 - Open and closed sets
 - Breadth-first and depth-first search
 - Dijkstra's algorithm
 - Best-first search
 - A*
 - IDA*
- 3 Searching game trees
 - Min-Max
 - α−β pruning

Breadth-first and depth-first search

- Should be treated as uninformed graph traversal techniques rather than searching algorithms (a search process should be guided by some useful information).
- It is difficult to point original authors. Charles Pierre Trémaux (1859–1882), a French mathematician, is suspected to be the first one to study DFS as a technique for solving mazes.
- Depth is understood as the number of transitions (hops) over edges, starting from an initial state, needed to reach a given state.
- BFS algorithm must visit all states awaiting at depth d before it is allowed to visit states at depth d + 1.
- DFS algorithm must not visit any state at depth d as long as there exist awaiting states at detph d + 1.

Breadth-first and depth-first search

```
    procedure BreadthFirstSearch(s<sub>0</sub>)

                                                                                                                             ▶ initial state so
      Closed := \emptyset
                                                                                                               > empty set of visited states
      set reference from s_0 to its parent to null
      Oven := \{s_0\}
                                                                                                             > queue of states to be visited
4.
      while Oven \neq \emptyset do
          remove from Open the state s with the smallest depth
                                                                                                                           ▶ 'poll' operation
                                                                                                                            ▶ solution found
          if s is the goal state then return s
          generate descendants \{t\} of s
                                                                                                             set their parent pointers to s
          for all t do
9
              if t ∉ Closed and t ∉ Open then add t to Open
          add s to Closed
      return null
                                                                                                                        no solution found
  procedure DepthFirstSearch(s_0)
                                                                                                                             ▶ initial state so
      Closed := \emptyset
                                                                                                               > empty set of visited states
      set reference from s_0 to its parent to null
      Oven := \{s_0\}
                                                                                                             > queue of states to be visited
4.
      while Oven \neq \emptyset do
          remove from Open the state s with the largest depth
                                                                                                                           ▶ 'poll' operation
6:
          if s is the goal state then return s
                                                                                                                            solution found
          generate descendants \{t\} of s
8
                                                                                                             set their parent pointers to s
          for all t do
9
              if t \notin Closed and t \notin Open then add t to Open
          add s to Closed
      return null
                                                                                                                        no solution found
```

P. Klesk (KMSIiMS, WI, ZUT)

Breadth-first and depth-first search

- We assume that states are aware of their depth (programistically: states are equipped with and integer depth field).
- When descendant t of s is being created, the depth of t becomes equal to the depth of s plus 1.
- Because of the expected order of states visiting, Open set can be implemented as: FIFO collection (ordinary queue) for BFS, LIFO collection (stack) for DFS.
- For graphs with size known in advance (known number of states / vertices) the Closed set can be implemented as an ordinary array of visits.
- For large graphs with size unknown in advance, more advanced data structures are needed to implement Closed set, e.g. hash map or red-black tree.

Table of contents

- On searching in general...
- Searching graphs
 - Open and closed sets
 - Breadth-first and depth-first search
 - Dijkstra's algorithm
 - Best-first search
 - A*
 - IDA*
- 3 Searching game trees
 - Min-Max
 - α−β pruning

E. Dijkstra (1959), "A note on two problems in connexion with graphs", Numerische Mathematik, 1(1), 269-271.

[http://www-m3.ma.tum.de/foswiki/pub/MN0506/WebHome/dijkstra.pdf]

- Algorithm for finding shortest paths in a graph.
- Often formulated in a way allowing to find *all* shortest paths between a selected source vertex and *all* remaining vertices — single-source all shortest paths.
- Can be modified to stop earlier, i.e. when a particular goal vertex is reached.
- Notation:
 - g(s) exact "travelled" cost from s_0 to s, $\Delta(s \to t)$ — cost of transition from s to t.


```
    procedure Dijkstra(s<sub>0</sub>)

                                                                                                                                ▶ initial state s<sub>0</sub>
       Closed := \emptyset
                                                                                                                  empty set of visited states
       g(s_0) := 0
                                                                                                                    cost travelled from start
       set reference from s_0 to its parent to null
4.
       Open := \{s_0\}
                                                                                                                queue of states to be visited
       while Open ≠ Ø do
           remove from Open the state s with the smallest g(s)
                                                                                                                              ▶ 'poll' operation
           if s is the goal state then return s
                                                                                                                               solution found
8
g.
           generate descendants \{t\} of s
           for all t do
               if t \in Closed then continue
                                                                                                                             ▶ t already visited
               g(t) := g(s) + \Delta(s \rightarrow t)
               set reference from t to its parent to s
               if t ∉ Open then
                  add t to Open
               else
16.
                   if new g(t) is smaller than value known so far then
                      replace t in Open with the new one
                      update position of t in Open
```

no solution found

14 / 82

add s to Closed

- Convenient data structure for *Open*: priority queue (binary heap, MIN-oriented).
- Complexity of poll operation (polling minimum state from Open): $O(\log n)$.
- Complexity of adding a state to *Open*: optimisitic $O(\log n)$, pessimistic O(n), amortized $O(\log n)$.
- Complexity of replacing a state in *Open*: O(n) for standard priority queue.
- Convenient data structure for *Closed* (especially when graph size unknown): hash map.
- Complexity of checking if a state present in Closed: O(1).
- Complexity of adding a state to *Closed*: optimistic O(1), pessimistic O(n), amortized O(1).

- **Proof of path optimality:** With respect to the returned state s*, all states s residing in *Open* at stop moment have costs $g(s) \ge g(s^*)$. Also, it is known that all states reachable from s_0 using paths with costs smaller than $g(s^*)$ have already been processed since the cheapest state is polled in each step of main loop.
- Considered to be uninformed search algorithm.
- If $\Delta(s \to t) = 1$ for any s, t being neighbors then Dijkstra's algorithm is equivalent to BFS.

Example 1

Initial vertex: 0. Goal vertex: 7.

- BFS order of visits: (0, 1, 2, 5, 3, 4, 6, 7), path: (0, 1, 3, 7), cost: 6.0.
- DFS order of visits: (0, 1, 3, 7), path: (0, 1, 3, 7), cost: 6.0.
- Dijkstra's algo. order of visits: (0, 2, 1, 5, 4, 3, 7), path: (0, 2, 1, 3, 7), cost: 5.0.

Initial vertex: 0. Goal vertex: 7.

BFS — search graph on successive steps:

[Results generated by SaC library: https://pklesk.github.io/sac, illustrations owing to: Graphviz https://www.graphviz.org.]

18 / 82

Initial vertex: 0. Goal vertex: 7.

BFS — search graph on successive steps:

 $[Results\ generated\ by\ \textit{SaC}\ library: \ \texttt{https://pklesk.github.io/sac,}\ illustrations\ owing\ to:\ \textit{Graphviz}\ \texttt{https://www.graphviz.org.}]$

Initial vertex: 0. Goal vertex: 7.

BFS — search graph on successive steps:

[Results generated by SaC library: https://pklesk.github.io/sac, illustrations owing to: Graphviz https://www.graphviz.org.]

• Initial vertex: 0. Goal vertex: 7.

BFS — search graph on successive steps:

 $[Results\ generated\ by\ \textit{SaC}\ library: \ \texttt{https://pklesk.github.io/sac,}\ illustrations\ owing\ to:\ \textit{Graphviz}\ \texttt{https://www.graphviz.org.}]$

• Initial vertex: 0. Goal vertex: 7.

BFS — search graph on successive steps:

 $[Results \ generated \ by \ \textit{SaC} \ library: \ \texttt{https://pklesk.github.io/sac}, illustrations \ owing \ to: \ \textit{Graphviz} \ \texttt{https://www.graphviz.org.}]$

Initial vertex: 0. Goal vertex: 7.

BFS — search graph on successive steps:

 $[Results \ generated \ by \ \textit{SaC} \ library: \ \texttt{https://pklesk.github.io/sac}, illustrations \ owing \ to: \ \textit{Graphviz} \ \texttt{https://www.graphviz.org.}]$

18 / 82

• Initial vertex: 0. Goal vertex: 7.

BFS — search graph on successive steps:

 $[Results\ generated\ by\ \textit{SaC}\ library: \ \texttt{https://pklesk.github.io/sac,}\ illustrations\ owing\ to:\ \textit{Graphviz}\ \texttt{https://www.graphviz.org.}]$

• Initial vertex: 0. Goal vertex: 7.

BFS — search graph on successive steps:

 $[Results \ generated \ by \ \textit{SaC} \ library: \ \texttt{https://pklesk.github.io/sac,} \ illustrations \ owing \ to: \ \textit{Graphviz} \ \texttt{https://www.graphviz.org.}]$

Initial vertex: 0. Goal vertex: 7.

DFS — search graph on successive steps:

Initial vertex: 0. Goal vertex: 7.

DFS — search graph on successive steps:

• Initial vertex: 0. Goal vertex: 7.

DFS — search graph on successive steps:

Artificial Intelligence

• Initial vertex: 0. Goal vertex: 7.

DFS — search graph on successive steps:

Initial vertex: 0. Goal vertex: 7.

Initial vertex: 0. Goal vertex: 7.

 Dijkstra's algorithm — search graph on successive steps:

Artificial Intelligence

Initial vertex: 0. Goal vertex: 7.

• Initial vertex: 0. Goal vertex: 7.

Initial vertex: 0. Goal vertex: 7.

Initial vertex: 0. Goal vertex: 7.

Initial vertex: 0. Goal vertex: 7.

Dijkstra's algorithm — search graph on successive steps:

20 / 82

"Geographical" graph

- Graph generated synthetically: 100 vertices, 10% of possible edges.
- Vertices placed randomly within [0,1] × [0,1] square, except for initial and goal state (0,0) and (1,1), respectively.
- Edge weights (transition costs) proportional to Euclidean distances with small random perturbations.

- Shortest path (0, 18, 14, 64, 60, 10, 5, 99) with cost ≈ 149.52 .
- Dijkstra's algorithm visits all states before finding the shortest path for this graph.

Table of contents

- On searching in general...
- Searching graphs
 - Open and closed sets
 - Breadth-first and depth-first search
 - Dijkstra's algorithm
 - Best-first search
 - A*
 - IDA*
- 3 Searching game trees
 - Min-Max
 - α−β pruning

Best-first search

 J. Pearl (1984), Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley.

[http://mat.uab.cat/ alseda/MasterOpt/Judea Pearl-Heuristics Intelligent Search Strategies for Computer Problem Solving.pdf]

- The most promising ("best") state is always expanded in first order.
- Quantitative assessment of how promising s is, made by means of a heuristic function h(s)
 informed search.
- Various possibilities to construct *h*(*s*):
 - based on static information contained in s,
 - based on information collected along the way from s_0 to s,
 - based on general knowledge about the problem and about properties of the goal state (solution).
- By convention $h(s) \ge 0$. Small values suggest closeness to solution.
- Best-first approach is focused on achieving the solution fast, via any path. One does not
 care about path minimization (the notion of path cost does not exist).
- Data structures (again): Open (priority queue), Closed (hash map).

Best-first search

```
    procedure BestFirstSearch(s<sub>0</sub>)

                                                                                                                                 ▶ initial so
       Closed := \emptyset
                                                                                                             empty set of visited states
       calculate h(s_0)
                                                                                                heuristic according to provided recipe
       set reference from s_0 to its parent to null
4.
       Open := \{s_0\}
                                                                                                           queue of states to be visited
       while Open ≠ Ø do
          remove from Open the state s with smallest h(s)
                                                                                                                         ▶ 'poll' operation
                                                                                                                         solution found
          if s is the goal state then return s
8
g.
           generate descendants \{t\} of s
           for all t do
              if t \in Closed then continue
                                                                                                                        ▶ t already visited
              calculate h(t)
              set reference from t to its parent to s
              if t ∉ Open then
                  add t to Open
              else
16.
                  if new h(t) is smaller than value known so far then
                                                                                   \triangleright e.g. when h(s) depends on information along path
                      replace t in Open with the new one
                      update position of t in Open
          add s to Closed
       return null
                                                                                                                      no solution found
```

24 / 82

Sudoku — example 1

Level hard:

*	*	*	*	*	*	8	*	*
8	*	*	7	*	1	*	4	*
*	4	*	*	2	*	*	3	*
3	7	4	*	*	*	9	*	*
*	*	*			*		*	*
*	*	5	*	*	*	3	2	1
*	1	*	*	6	*	*	5	*
*	5	*	8	*	2	*	*	6
*	8	*	*	*	*	*	*	*

 Best-first search + "empty cells" heuristic, descendants at "minimum cell", closed states: 222, open states: 14

[time: 7 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

Artificial Intelligence

Sudoku — example 2

Level hard:

- • •		ш						
*	*	*	9	*	*	*	*	2
*	5	*	1	2	3	4	*	*
*	3	*	*	*	*	1	6	*
9	*	8	*	*	*	*	*	*
*	7	*	*	*	*	*	9	*
*	*	*	*	*	*	2	*	5
*	9	1	*	*	*	*	5	*
	*	7			9		_	
4	*	*	*	*	7	*	*	*
				Π				

				$\mathbf{\Psi}$				
8	1	4	9	7	6	5	3	2
6	5	9	1	2	3	4	7	8
7	3	2	8	5	4	1	6	9
9	4	8	2	6	5	3	1	7
2	7	5	3	4	1	8	9	6
1	6	3	7	9	8	2	4	5
3	9	1	6	8	2	7	5	4
5	8	7	4	3	9	6	2	1
4	2	6	5	1	7	9	8	3

Best-first search + "empty cells" heuristic, descendants at "minimum cell", closed states: 418, open states: 41

[time: 19 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

26 / 82

Sudoku — "Qassim Hamza"

Level very hard:

			,					
*	*	*	7	*	*	8	*	*
*	*	*	*	4	*	*	3	*
*	*	*	*	*	9	*	*	1
6	*	*	5	*	*	*	*	*
*	1	*	*	3	*	*	4	*
*	*	5	*	*	1	*	*	7
5	*	*	2	*	*	6	*	*
*	3	*	*	8	*	*	9	*
*	*	7	*	*	*	*	*	2
				J.				

3	2	9	7	1	6	8	5	4
1	7	6	8	4	5	2	3	9
4	5	8	3	2	9	7	6	1
6	4	3	5	7	2	9	1	8
7	1	2	9	3	8	5	4	6
8	9	5	4	6	1	3	2	7
5	8	1	2	9	4	6	7	3
2	3	4	6	8	7	1	9	5
9	6	7	1	5	3	4	8	2

 Best-first search + "empty cells" heuristic, descendants at "minimum cell", closed states: 525, open states: 40

[time: 70 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

Sudoku — other heuristic

- Identify *s* with a two-dimensional array (board).
- Let s(i, j) denote the contents of cell (i, j).
- Let r(s, i, j) denote set of possible values (digits) for cell (i, j) once we substract from set $\{1, \ldots, 9\}$ values present in i-th row, j-th column and subsquare that contains cell (i, j).
- "Sum of remaining possibilities" heuristic:

$$h(s) = \sum_{i,j} \#r(s,i,j).$$
 (1)

Sudoku — example 1

Level hard:

*	*	*	*	*	*	8	*	*	
8	*	*	7	*	1	*	4	*	
*	4	*	*	2	*	*	3	*	
3	7	4	*	*	*	9	*	*	
*	*	*	*	3	*	*	*	*	
*	*	5	*	*	*	3	2	1	
*	1	*	*	6	*	*	5	*	
*	5	*	8	*	2	*	*	6	
*	8	*	*	*	*	*	*	*	

7	6	1	5	4	3	2	8	9
8					1			
5	4	9	6	2	8	1	3	7
3								8
1	2	8	9	3	6	5	7	4
6	9	5	4	8	7	3	2	1
4	1	7	3	6	9	8	5	2
9	5	3	8	7	2	4	1	6
2	8	6	1	5	4	7	9	3

 Best-first search + "sum of remaining possibilities" heuristic,

descendants at "minimum cell", closed states: 304, open states: 20

[time: 16 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

Sudoku — example 2

Level hard:

216	21 1	lai	u.					
*	*	*	9	*	*	*	*	2
*	5	*	1	2	3	4	*	*
*	3	*	*	*	*	1	6	*
9	*	8	*	*	*	*	*	*
*	7	*	*	*	*	*	9	*
*	*	*	*	*	*	2	*	5
*	9	1	*	*	*	*	5	*
*	*	7	4	3	9	*	2	*
4	*	*	*	*	7	*	*	*

				$^{\downarrow}$				
8	1	4	9	7	6	5	3	2
6	5	9	1	2	3	4	7	8
7	3	2	8	5	4	1	6	9
9	4	8	2	6	5	3	1	7
2	7	5	3	4	1	8	9	6
1	6	3	7	9	8	2	4	5
3	9	1	6	8	2	7	5	4
5	8	7	4	3	9	6	2	1
4	2	6	5	1	7	9	8	3

 Best-first search + "sum of remaining possibilities" heuristic,

descendants at "minimum cell", closed states: 381, open states: 37

[time: 16 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

Sudoku — "Qassim Hamza"

Level very hard:

Best-first search + "sum of remaining possibilities" heuristic.

descendants at "minimum cell", closed states: 5267, open states: 452

イロナイ御ナイミナイミナ

Sudoku — comparison of heuristics

- Omparison for 50 sudoku boards source:
 - [https://projecteuler.net/project/resources/p096_sudoku.txt]
- Best-first search + "empty cells" heuristic:
 - Average number of closed states: 166.92.
 - Average number of open states (at stop moment): 14.32.
 - Average time: 11.88 ms.
- Best-first search + "sum of remaining possibilities" heuristic:
 - Average number of closed states: 176.64.
 - Average number of open states (at stop moment): 15.08.
 - Average time: 13.16 ms.

All 4×4 sudokus

Solutions: 288.

• Closed states: 2273, open states: 0.

Artificial Intelligence

Table of contents

- On searching in general...
- Searching graphs
 - Open and closed sets
 - Breadth-first and depth-first search
 - Dijkstra's algorithm
 - Best-first search
 - A*
 - IDA*
- 3 Searching game trees
 - Min-Max
 - α – β pruning

P. Hart, N. Nilsson, B. Raphael (1968), "A Formal Basis for the Heuristic Determination of Minimum Cost Paths", IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107.

[http://ieeexplore.ieee.org/document/4082128/]

- Informally, A* algorithm can be seen as a combination of Dijkstra's algorithm and Best-first search (or a more general form of those).
- Function deciding about the order of states polled from *Open* queue is of form:

$$f(s) = g(s) + h(s), \tag{2}$$

where: g(s) — exact travelled cost from s_0 to s, whereas h(s) — heuristic estimation of cost remaining from s to the goal state.

- Since *h* is a heuristic then also is *f*.
- For shortest paths finding, h must be a so called *admissible heuristic* i.e. a lower bound on remaining cost — it *must not* overestimate the true cost.
- For geographical graphs, the distance along straight line (Euclidean) is admissible heuristic for certain.
- Data structures (again): *Open* (priority queue), *Closed* (hash map).

35 / 82

A

```
procedure AStar(s_0)
      Closed := \emptyset
      g(s_0) := 0
      calculate h(s_0)
4:
      f(s_0) := g(s_0) + h(s_0)
      set reference from s_0 to its parent to null
6:
      Open := \{s_0\}
      while Open ≠ Ø do
8
          remove from Open the state s with smallest f(s)
9
          if s is the goal state then return s
          generate descendants \{t\} of s
          for all t do
              if t \in Closed then continue
              g(t) := g(s) + \Delta(s \rightarrow t)
              calculate h(t)
              f(t) := g(t) + h(t)
              set reference from t to its parent to s
              if t ∉ Oven then
                 add t to Open
              else
                  if new f(t) is smaller than value known so far then
                      replace t in Open with the new one
                      update position of t in Open
          add s to Closed
      return null
```

```
    ▶ initial state s<sub>0</sub>
    ▶ empty set of visited states
    ▶ distance covered from start
    ▶ heuristic according to provided recipe
    ▶ sum deciding about order of Open queue

    ▶ queue of states to be visited
    ▶ 'poll' operation
    ▶ solution found

    ▶ t already visited
```

▶ no solution found

Theorem "path optimality for admissible heuristic"

When A^* algorithm, using an admissible heuristic, finds the goal state then the path associated with it is the shortest.

Proof: At stop moment (line 10) the aglorithm returns state s^* with travelled cost $g(s^*)$. Since s^* satisfies the stop condition then $h(s^*) = 0$. For all states s residing in *Open* at stop moment it is known that $f(s) \ge f(s^*)$. Among these states three cases can be distinguished. Case 1: a state s satisfies the stop condition, i.e. h(s) = 0, but $g(s) \ge g(s^*)$, because $f(s) \ge f(s^*)$. Case 2: a state s does not satisfy the stop condition, i.e. h(s) > 0, but can potentially be driven to the goal state, and currently has the cost $g(s) < g(s^*)$; knowing that h(s) is a lower bound on the remaining cost and that $f(s) \ge f(s^*)$, then the true cost of reaching the goal state, traveling through s, must satisfy inequalities: $g(s) + \Delta(s \to s^*) \ge g(s) + h(s) \ge g(s^*)$. Case 3: a state s has h(s) > 0 and $g(s) \ge g(s^*)$ — irrelevant. ■

Monotonous heuristic

- Additional useful notion: monotonous heuristic.
- We say that h is monotonous if for all pairs s, t (where t is a descendant of s) the following inequality holds:

$$f(s) \le f(t),\tag{3}$$

which can be rewritten as

$$g(s) + h(s) \le g(t) + h(t) \tag{4}$$

$$h(s) \le g(t) - g(s) + h(t) \tag{5}$$

$$h(s) \le \Delta(s \to t) + h(t).$$
 (6)

- The above is a form of *triangle inequality*: heuristic at s must not be greater than the cost of $s \rightarrow t$ transition plus heuristic at t.
- The equality case in (6) occurs only when one travels towards the goal state along a straight line (with respect to the metric associated with the given graph).
- If a heuristic is monotonous than it is admissible.

38 / 82

"Geographical" graph (again)

Graph generated synthetically: 100 vertices, 10% of possible edges.

- Shortest path (0, 18, 14, 64, 60, 10, 5, 99) with cost ≈ 149.52 .
- *Dijkstra's algorithm* visits *all* states before finding the optimal path.
- A^* + Euclidean distance closed states: 18, open states: 38 informed search.

Good and bad (overestimating) heuristic

Good:

$$h_1(s) = \sqrt{(s_x - s_x^*)^2 + (s_y - s_y^*)^2}$$
 (7)

or
$$h_2(s) = |s_x - s_x^*| + |s_y - s_y^*|$$
 (8)

Bad:

$$h_3(s) = 4\sqrt{(s_x - s_x^*)^2 + (s_y - s_y^*)^2}$$

or
$$h_4(s) = 4\left(|s_x - s_x^*| + |s_y - s_y^*|\right)$$

Sliding puzzle

• Sliding puzzle ($n^2 - 1$ -puzzle): Starting from an initial state and sliding tiles into the empty space (tile numbered as 0), the task is to reach the goal state (with numbers $\{0, 1, ..., n^2 - 1\}$ ordered in successive rows) in the fewest number of moves.

0	1	2
3	4	5
6	7	8

Sliding puzzle — heuristics

- "misplaced tiles" number of tiles at incorrect positions (not counting the '0' tile).
- "Manhattan" sum of distances (using Manhattan metric) of all tiles from their target positions (not counting the '0' tile).

$$h(s) = \sum_{\substack{0 \le i, j < n \\ s(i,j) \neq 0}} \left| i - \lfloor s(i,j)/n \rfloor \right| + \left| j - s(i,j) \bmod n \right|. \tag{9}$$

- "Manhattan + linear conflicts" as above + counting additional 2 moves implied by each linear conflict — see:
 - O. Hansson, A.E. Mayer, M.M. Yung (1985), "Generating Admissible Heuristics by Criticizing Solutions to Relaxed Models", Columbia University Computer Science Technical Reports, https://doi.org/10.7916/D89Z9CW3.
 - [https://www.researchgate.net/profile/Moti_Yung/publication...]
- Are the above heurisites monotonous?

Sliding puzzle

- Search graphs for initial state (0,3,2;4,7,8;1,5,6) and different heuristics.
- A* + "misplaced tiles"

[states: 672, time: 34 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

● A* + "Manhattan"

[states: 106, time: 21 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

● A* + "Manhattan + linear conflicts"

[states: 78, time: 16 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

Shortest path of length 16: (D,R,D,R,U,L,L,D,R,U,L,D,R,U,L).

43 / 82

Sliding puzzle — comparison of heuristics

- Comparison for 100 random boards for n = 3, each board shuffled with 1000 moves.
- A* + "misplaced tiles"
 - Average number of closed states: 12263.89.
 - Average number of open states (at stop time): 5865.45.
 - Average time: 28.57 ms.
- A* + "Manhattan"
 - Average number of closed states: 1024.44.
 - Average number of open states (at stop time): 588.19.
 - Average time: 8.09 ms.
- A* + "Manhattan + linear conflicts"
 - Average number of closed states: 530.14.
 - Average number of open states (at stop time): 316.81.
 - Average time: 7.37 ms.

• A^* + "Manhattan + linear conflicts" — search graph in first 5 steps and the last:

45 / 82

*A** vs Best-first search

● A* + "Manhattan + linear conflicts"

[states: 78, time: 16 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

Shortest path of length 16: (D,R,D,R,U,L,L,D,R,U,U,L,D,R,U,L).

Best-first search + "Manhattan + linear conflicts"

[states: 41, time: 13 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

Shortest path of length 18: (R,D,D,R,U,L,U,L,D,D,R,U,U,L,D,R,U,L).

*A** vs Best-first search

● A* + "Manhattan"

[states: 78, time: 16 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

Shortest path of length 16: (D,R,D,R,U,L,L,D,R,U,U,L,D,R,U,L).

Best-first search + "Manhattan"

[states: 681, time: 32 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

Shortest path of length 134: (R, D, L, D, R, R, U, L, L, D, R, U, L, U, R, D, R, U, L, L, D, R, U, R, D, L, L, U, R, D, D, R, U, L, U, L, U, L, U, L, U, L, U, R, D, D, R, U, L, U, R, D, D, R, U, L, U, L, U, L, U, L, U, R, D, D, R, U, L, U, R, L, U, R, U, L, U, R, L, U, R, U, L, U, L, U, R, U, L, U, R, U, L, U, L, U, R, U, L, U, R, U, L, U, R, U, L, U, L, U, L, U, L, U, R, U, L, U,

Sliding puzzle — examples for n = 4

- Selected examples from O. Hansson, A.E. Mayer, M.M. Yung (1985), "Generating Admissible Heuristics by Criticizing Solutions to Relaxed Models", Columbia University Computer Science Technical Reports, https://doi.org/10.7916/D89Z9CW3.
 - $[https://www.researchgate.net/profile/Moti_Yung/publication...] \\$
- IDA* (Iterative Deepening A*) memory-economic version of A*, but computationally expensive.

no.	initial state	path length	IDA*	IDA* time [s]	A* states closed and open	A* time [s]
85	4,7,13,10,1,2,9,6,12,8,14,5,3,0,11,15	44	$1.5 \cdot 10^{7}$	12.3	$1.7 \cdot 10^5$, $1.6 \cdot 10^5$	0.9
5	4,7,14,13,10,3,9,12,11,5,6,15,1,2,8,0	56	$2.6 \cdot 10^{7}$	20.4	$1.6 \cdot 10^6$, $1.4 \cdot 10^6$	11.7
2	13, 5, 4, 10, 9, 12, 8, 14, 2, 3, 7, 1, 0, 15, 11, 6	55	$3.8 \cdot 10^{7}$	31.2	$2.6 \cdot 10^6, \ 2.1 \cdot 10^6$	26.9
					brak RAM (2 GB) przy:	
54	12, 11, 0, 8, 10, 2, 13, 15, 5, 4, 7, 3, 6, 9, 14, 1	56	$1.9 \cdot 10^{8}$	150.5	$3.1 \cdot 10^6, \ 2.5 \cdot 10^6$	_
					brak RAM (2 GB) przy:	
1	14, 13, 15, 7, 11, 12, 9, 5, 6, 0, 2, 1, 4, 8, 10, 3	57	$2.5 \cdot 10^{8}$	212.3	$3.4 \cdot 10^6$, $2.8 \cdot 10^6$	_

[time: 7 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

A^* — concluding remarks

- When h(s) = 0 for all s then: $A^* = \text{Dijkstra's algorithm}$.
- When g(s) = 0 for all s then: $A^* = \text{Best-first search}$.
- The better information carried by h the less work A^* has to do.
- Monotonicity of a heuristic implies three consequences:
 - solution found is optimal (shortest path),
 - 2 algorithm itself is optimal with respect to h, i.e. no other algorithm, using h, cannot visit fewer states than A^* (differences only due to tie-breaking),
 - **1** let h^* denote a perfect heuristic representing the true distance / cost to the goal, then an algorithm using h^* is perfect too visits the smallest number of states possible (hence originally two names distinguished: A and A^*).

Table of contents

- On searching in general...
- Searching graphs
 - Open and closed sets
 - Breadth-first and depth-first search
 - Dijkstra's algorithm
 - Best-first search
 - A*
 - IDA*
- 3 Searching game trees
 - Min-Max
 - α – β pruning

IDA^*

- R. Korf (1985), "Depth-first Iterative Deepening: An Optimal Admissible Tree Search", Artificial Intelligence, 27, 97–109.
 - [https://pdfs.semanticscholar.org/7eaf/535ca7f8d1e920e092483d11efb989982f19.pdf]
- For some suitably large problems, A* may exhaust RAM memory (very large Open and Closed sets).
- IDA^* can be seen as memory-economic version of A^* .
- IDA* does not keep evidence of visited states no Closed set.
- IDA* keeps in memory only the states that are on currently studied path.
- The algorithm can be formulated recursively (with no *Open* set) or traditionally with a main loop (then only a small *Open* set occurs).

IDA[∗] — sketch

• The algorithm uses $h(s_0)$ value to establish an initial search horizon:

$$H = f(s_0) = 0 + h(s_0). (10)$$

- Then, it studies various paths outgoing from s_0 (e.g. with a *depth-first* approach).
- If the goal state is reached within *H*, then it is returned.
- Any state "touched" outside H is not expanded further, but the information about cost observed for that state is useful to establish the next search horizon:

$$H' = \min_{\{s: \ g(s) > H\}} f(s). \tag{11}$$

 Once all the paths within H are exhausted, the horizon is deepened i.e. H := H' and whole process is repeated.

*IDA** recursively

```
procedure RecursiveIterativeDeepeningAStar(s_0)
                                                                                                                               ▶ initial state so
      g(s_0) := 0
                                                                                                                   ▶ cost travelled from start
      calculate h(s_0)
                                                                                                   > heuristic according to provided recipe
      f(s_0) := g(s_0) + h(s_0)
4:
      set reference from s_0 to its parent to null
                                                                                                                      ▶ initial search horizon
6:
      H := f(s_0)
      while true do
          (s, H') := Search(s_0, H)
8:
          if s \neq \text{null} then return s
                                                                                                                             > solution found
9
          if H' = \infty then return null
                                                                                                                          > no solution found
          H := H'
  procedure Search(s, H)
      if f(s) > H then return (null, f(s))
      if s is the target state then return (s, g(s))
                                                                                                                             > solution found
      H' := \infty
4:
5:
      generate descendants \{t\} of s
6:
      for all t do
          g(t) := g(s) + \Delta(s \rightarrow t)
          f(t) := g(t) + h(t)
8
          (u,H'') := Search(t,H)
          if u \neq \text{null} then return (u, g(u))
                                                                                                                             > solution found
          H' := \min\{H', H''\}
                                                                                                                     deepening the horizon
      return (null, H')
```

Artificial Intelligence

*IDA** non-recursively

```
    procedure IterativeDeepeningAStar(s<sub>0</sub>)

                                                                                                                   ▶ cost travelled from start
      g(s_0) := 0
      calculate h(s_0)

    heuristic according to provided recipe

4:
      f(s_0) := g(s_0) + h(s_0)
      set reference from s_0 to its parent to null
                                                                                                               > queue of states to be visited
      Open := \{s_0\}
6:
                                                                                                           ▶ initial and next search horizons
      H := f(s_0), H' := \infty
      while Open ≠ Ø do
8:
9
          remove from Open the state s with smallest f(s)
          if g(s) > H then
              H' := \min\{H', f(s)\}\
              if Open = \emptyset then
                  H := H', H' := \infty, Open := \{s_0\}
                                                                                                                     deepening the horizon
              continue
          if s is the target state then return s
          generate descendants \{t\} of s
          for all t do
              g(t) := g(s) + \Delta(s \rightarrow t)
              calculate h(t)
             f(t) := g(t) + h(t)
              set reference from t to its parent to s
              if t ∉ Oven then
                  add t to Open
              else
                  if new f(t) is smaller than value known so far then
                      replace t in Open with the new one
                      update position of t in Open
```

▶ initial state so

▶ 'poll' operation

solution found

Table of contents

- On searching in general...
- Searching graphs
 - Open and closed sets
 - Breadth-first and depth-first search
 - Dijkstra's algorithm
 - Best-first search
 - A*
 - IDA*
- 3 Searching game trees
 - Min-Max
 - α−β pruning

Games

Commonly, two-person games considered: chess, checkers, GO, . . .

- Game a situation of conflict, where players have opposite goals, and where we have clearly defined rules.
- Problem of searching game tree: Given a game position (in particular, an initial position), the task is to provide *quantitative evaluations* (*scores*) for particular *moves* at current player's disposal. An evaluation should represent exact or approximate *payoff* for the player if he chooses a given move, assuming the optimal counter-play by opponent.

Games — initial chess tree fragment

Table of contents

- On searching in general...
- Searching graphs
 - Open and closed sets
 - Breadth-first and depth-first search
 - Dijkstra's algorithm
 - Best-first search
 - A*
 - IDA*
- 3 Searching game trees
 - Min-Max
 - α−β pruning

Min-Max algorithm

- Sketch: given an initial position, a tree of game states is expanded up to the imposed depth. Terminal positions (leaves) are associated with *quantitative evaluations*. Tree traversal follows, and evaluations are propagated up the tree. In effect, direct descendants of the initial state are evaluated too (and so are possible initial moves).
- Position evaluation function is a heuristic function working according to people's knowledge and intuition about the game.
- E.g. for chess: difference between materialistic value of white and black pieces.
- Commonly, each player is named as: maximizing or minimazing player.
- The win of minimizing player is represented by $-\infty$.
- The win of maximizing player is represented by $+\infty$.
- When game tree is suitably small (or when studied is a strict endgame) and true terminal states are reached, then possible values of leaves are: $-\infty$, $+\infty$, 0 (tie). In that case, heuristic evaluation is not needed.

Min-Max — illustration

Min-Max — illustration

Min-Max — notions and notation

- half-move (or ply) a move by one of players; moving by one tree level is by convention counted as $\pm \frac{1}{2}$; 2 half-moves (made by both players) are treated as a whole move.
- branching factor average or constant number of moves for a player in the given game; commonly, denoted by b (e.g. for chess $b \approx 40$ in the middle game).
- search horizon imposed number of tree levels to be studied; commonly, denoted by *D*.
- horizon effect general flaw of all minimax procedures implied by the limited search depth; this phenomenon means that a state residing just outside the horizon can significantly differ in its evaluation (with respect to parent) and e.g. turn out catastrophic for a player, even though its ancesteors seemed attractive (or vice-versa).
- Quiescence helper technique that partially mitigates horizon effect; it consists in expanding states on the horizon frontier (or behind it) until so-called *quiet positions* are reached (e.g. with no possible captures).

Min-Max algorithm

```
procedure MMEvaluateMaxState(s, d, D)
      if IsTerminal(s, d, D) then return h(s)
                                                                                                 ▶ h(s) — heuristic evaluation of position
      v := -\infty
      generate descendants \{t\} of s
4:
      for all t do
          w := MMEvaluateMinState(t, d + \frac{1}{2}, D)
6.
          if s is the root state then memorize w as the score of s \to t move
          v := \max\{v, w\}
      return 77
  procedure MMEvaluateMinState(s, d, D)
      if IsTerminal(s, d, D) then return h(s)
                                                                                                 \triangleright h(s) — heuristic evaluation of position
      n := \infty
      generate descendants \{t\} of s
      for all t do
          w := MMEvaluateMaxState(t, d + \frac{1}{2}, D)
          if s is the root state then memorize w as the score of s \to t move
          v := \min\{v, w\}
      return 77
```

Min-Max — stop points

- Is Terminal (s, d, D) a routine method that checks if we are at stop point, implemented accoring to the game rules.
- Commonly, any of the following condition should be satisfied:
 - $d \ge D$ and s is quiet,
 - $h(s) = \pm \infty$ s is the win state,
 - $h(s) \neq \pm \infty$, but s is a *draw* state by the rules (e.g. for chess: stalemate, perpetual check, three-time repetition of position).

Chess — position evaluation

• Example of a function proposed by C. Shannon (1949):

$$f(s) = 200(K_s - K_s') + 9(Q_s - Q_s') + 5(R_s - R_s') + 3(B_s - B_s' + N_s - N_s') + 1(P - P')$$
 (materialistic)
$$-0.5(D_s - D_s' + S_s - S_s' + I_s - I_s') + 0.1(M_s - M_s'),$$
 (positional) (12)

where *K*, *Q*, *R*, *B*, *N*, *P* denote counts of: kings, queens, rooks, bishiops, knights and pawns; *D*, *S*, *I* denote counts of pawns that are: doubled, blocked, isolated; *M* denotes mobility (number of moves at disposal); the ' (prime symbol) denotes same features for the opposing side.

- Commonly in contemporary chess engines, evaluations expressed in so-called centipawns.
- One pawn = 100 centipawns. Smallest positional advantage is worth 1 centipawn.
- Elements taken into account:
 - control over board center,
 - activeness of pieces (and their "connectivity"),
 - pawn structure,
 - king safety,
 - pawns close to promotion,
 - space,
- Popular are also approaches self-tuning a parametric evaluation function (e.g. based on genetic algorithms).

Checkers — position evaluation

Example of materialistic and positional heuristic (M. Bożykowski, 2009):

$$f(s) = 13(P_s - P'_s) + 85(K_s - K'_s) \quad (materialistic)$$

+ $6(T_s - T'_s) + 1(I_s - I'_s) - 1(F_s - F'_s), \quad (positional)$ (13)

where: *P*, *K* denote counts of pawns and kings, respectively; *T*, *I*, *F* denote counts of pawns that are: 1 square away from promotion, incapturable, frozen.

Example of materialistic and row-oriented heuristic (M. Bożykowski, 2009):

$$f(s) = \sum_{i=1}^{9} w_i \left(P_s(i) - P_s'(11 - i) \right) + 12(K_s - K_s'), \tag{14}$$

where: $P_s(i)$ denotes the number of pawns in *i*-th board row (for a board with 100 squares); integer weights tuned genetically: w = (2,1,2,2,2,2,1,3,6);

Min-Max — computational complexity

- R_d number of states that must be visited in a tree with d levels, in order to get to know
 the value of given state sum of geometric sequence.
- Recursive approach (useful for analysis of more advanced tree-search algorithms):

$$R_0 = 1;$$

 $R_d = 1 + bR_{d-1}.$ (15)

Expansion:

$$R_{d} = 1 + bR_{d-1}$$

$$= 1 + b(1 + bR_{d-2}) = 1 + b + b^{2}R_{d-2}$$

$$\vdots$$

$$= 1 + b + b^{2} + \dots + b^{d}R_{d-d} = \frac{b^{d+1} - 1}{b - 1}$$

$$< \frac{b^{d+1}}{b - 1} = \underbrace{\frac{b}{b - 1}}_{C^{2}} \underbrace{\frac{1}{b}}_{D^{d+1}} \le 2b^{d} \sim O(b^{d})$$

$$(17)$$

Simplified scheme: $O(b \cdot b \cdots b) - d$ -times b.

Table of contents

- On searching in general...
- 2 Searching graphs
 - Open and closed sets
 - Breadth-first and depth-first search
 - Dijkstra's algorithm
 - Best-first search
 - A*
 - IDA*
- 3 Searching game trees
 - Min-Max
 - α – β pruning

α - β pruning

- Many independent discoverers: (Samuel, 1952), (Edwards and Hart, 1963), (Brudno, 1963), (Newell and Simon, 1958; 1976).
- Exact analysis: D. Knuth, R. Moore, R. (1975), "An analysis of alpha-beta pruning", Artificial Intelligence, 6(4), 293–326.

[https://pdfs.semanticscholar.org/dce2/6118156e5bc287bca2465a62e75af39c7e85.pdf]

- Belongs to branch and bound class of algorithms.
- At operation time two values are tracked along the tree: α — guaranteed so far pay-off for the maximizing player, β — guaranteed so far pay-off for the minimizing player.
- On invocation for the root state, one imposes $\alpha = -\infty$, $\beta = \infty$.
- Children states (and their subtrees) analyzed as long as $\alpha < \beta$.
- Whenever $\alpha \ge \beta$ we stop to analyze subsequent children (and their subtrees) they shall not affect result for the whole tree, they are effect of non-optimal play by one of players.
- $\alpha > \beta$ is a logical contradiction; equality case can be additionally included to pruning because it does not introduce an improvement of result.
- Despite tree reductions, α – β pruning algorithm yields exactly same results (move evaluations) as Min-Max.

α – β pruning

```
procedure AlphaBetaEvaluateMaxState(s, d, D, \alpha, \beta)
       if IsTerminal(s, d, D) then return h(s)
                                                                                                              \triangleright h(s) — heuristic position evaluation
       generate descendants \{t\} of s
       for all t do
           v := AlphaBetaEvaluateMinState(t, d + \frac{1}{2}, D, \alpha, \beta)
           if s is the root state then memorize v as the score of s \to t move
           \alpha := \max\{\alpha, v\}
           if \alpha \geq \beta then return \alpha

    cut-off (!) — subsequent t states not studied

       return \alpha
   procedure AlphaBetaEvaluateMinState(s, d, D, \alpha, \beta)
       if IsTerminal(s, d, D) then return h(s)
                                                                                                              ▶ h(s) — heuristic position evaluation
       generate descendants \{t\} of s
       for all t do
           v := AlphaBetaEvaluateMaxState(t, d + \frac{1}{2}, D, \alpha, \beta)
           if s is the root state then memorize v as the score of s \to t move
6:
           \beta := \min\{\beta, v\}
           if \alpha \geq \beta then return \beta

    cut-off (!) — subsequent t states not studied
```

return β

α – β pruning — example 1

α – β pruning — example 2

Artificial Intelligence

α - β pruning — complexity

- Computational complexity depends on the *order* of visiting descendants (children states).
- It is favourable when cut-off causing descendents are closer to the beginning of the list.
- There exist some helper techniques attempting to suitably order descendants and thereby increase cut-off frequency (but in general, optimal order is not known in advance),
- In pessimistic case (for *d* levels): $O(b^d)$.
- In optimistic case (for *d* levels): $O(b^{d/2})$.

α – β pruning — example 3

α – β pruning — example 3a

α – β pruning — example 3b

α – β pruning — optimistic complexity

- We know either exact value of a state, or bound (lower or upper) on that value.
- To establish the exact value, it suffices (in optimistic case) to know: exact value for 1 child and bounds for b-1 remaining children.
- To establish a bound, it suffices (in optimistic case) to know: exact value for 1 child.
- R_d minimum number of states (distant by d levels from given state) one must visit to establish the exact value.
- S_d minimum number of states (distant by d levels from given state) one must visit to establish a bound.
- Border values: $R_0 = S_0 = 1$.
- Recursions:

$$R_d = R_{d-1} + (b-1)S_{d-1}; (18)$$

$$S_d = R_{d-1}. (19)$$

By joining them, we obtain:

$$R_d = R_{d-1} + (b-1)R_{d-2}. (20)$$

• For the example from previous slide: $R_3 = b^2 + b - 1 = 11$.

α - β pruning — optimistic complexity

 $R_d = R_{d-1} + (b-1)R_{d-2}$

Estimation of optimistic number of states:

$$= R_{d-2} + (b-1)R_{d-3} + (b-1)R_{d-2}$$

$$= bR_{d-2} + (b-1)R_{d-3}$$

$$< bR_{d-2} + (b-1)R_{d-2}$$

$$= (2b-1)R_{d-2}$$

$$< 2bR_{d-2}.$$
(21)

- Effective branching factor is smaller than 2*b* for every 2 levels. Hence, for one level it is smaller than $\sqrt{2b}$.
- Expansion:

$$R_d < 2bR_{d-2} < (2b)^2 R_{d-4} < (2b)^3 R_{d-6} < \dots < (2b)^k R_{d-2k}$$
 (22)

$$<(2b)^{d/2}R_{d-2d/2} = (2b)^{d/2}R_0 \sim O(b^{d/2}) = O\left(\left(\sqrt{b}\right)^d\right)$$
 (treating d as fixed) (23)

- Simplfied scheme: $O(b \cdot 1 \cdot b \cdot 1 \cdots b \cdot 1) d/2$ -times b.
- In average case the complexity can be shown to be $\sim O(b^{3d/4})$.

Initial tree fragments for checkers

• *Min-Max* + *Quiescence*, depth (for quiet positions): 1.0, states: 86

• α - β *pruning* + *Quiescence*, depth (for quiet positions): 1.0, states 78:

• *Min-Max* + *Quiescence*, depth (for quiet positions): 1.5, states: 693

• α - β *pruning* + *Quiescence*, depth (for quiet positions): 1.5, states: 323

[Results generated by SaC library: https://pklesk.github.io/sac, illustrations owing to: Graphviz https://www.graphviz.org.]

Checkers endgame — example 1

White to move and win in 4 moves:

 \bullet α - β pruning + Quiescence, depth: 2.5, states: 100

Principal variation: (*G*5 : *H*6, *G*7 : *F*6, *F*4 : *G*5, *F*6 : *E*5, *G*5 : *F*6, *E*5 : *G*7, *H*6 : *F*8 : *D*6).

Checkers endgame — example 2

White to move. Who wins?

 α - β *pruning* + *Quiescence*, depth: 5.5, states: 2845

Checkers endgame — example 3

"4 kings vs 1 king"

position:

results from *SaC* library:

Searching with sac.game.AlphaBetaPruning... Searching done. Time: 1789 ms. Closed states: 54898 General depth limit: 3.5 Maximum depth reached (Quiescence): 4.5 Transposition table size: 52967 Transposition table uses: 69365 Refutation table size: 4611 Refutation table uses:

Moves scores: {B2:D4=1.0985902490825263E308, B2:A3=3000.0}

Best move: B2:D4

Principal variation: [B2:D4, D8:A5, B8:D6, A5:E1, D6:G3,

E1:H4. C1:G5. H4:F6:C3. A1:D47

Illustration of principal variation: [https://github.com/pklesk/sac/releases/download/1.0.3/sac-1.0.3-userguide.pdf#page=150]

