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On searching in general...

Graphs within Al

@ Graphs: geographical, mazes, navigational . . . but also — puzzles, riddles that can be
represented as a graph, e.g.: sudoku, sliding puzzle, Rubik’s cube, solitaires, Rummikub,
packing problems, etc.
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@ Vertices — states of a puzzle, edges — possible moves / manipulations transitting a given
state into another.

@ Problem of searching graph:
Given an initial graph state, the task is to find a path of transitions (if exists) to a goal
state. Additionally, if stated in the task, the goal is to find the minimum path.
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Searching — what is needed?

“ Generation of descendants — What new states (direct descendants) can be generated from a
given state?

@ Identification — What identifiers (string or integer representations) can be assigned to states, so
that the same state is not visited multiple times unnecessarily?

e Termination — Is given state a terminal? Le. a solution state (graphs) or a win state (game trees)?

@ Heuristics (optional) — An estimation how far a state is from the solution (graphs), or an
evaluation whether the state represents some advantage for the maximizing or the minimizing
player (game trees).
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Searching graphs = Open and closed sets

Open and closed sets

@ Most graph searching algorithms can be formulated with use of two data sets, named by
convention as: Open and Closed.

@ Atany moment of an operating algorithm, the Closed set contains states that have been
already visited, the Open set contains states that await to be visited.

@ Awaiting states have been generated as descendants (graph neighbors) of states visited
earlier.

@ Open and Closed sets can be implemented using various data structures depending on the
wanted algorithmic behaviour and efficiency.

@ What kind of algorithm we deal with is essentially decided by the order according to
which states are polled (taken and removed) from Open set for further processing.

ame trees
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Breadth-first and depth-first search

@ Should be treated as uninformed graph traversal techniques rather than searching
algorithms (a search process should be guided by some useful information).

@ It is difficult to point original authors. Charles Pierre Trémaux (1859-1882), a French
mathematician, is suspected to be the first one to study DFS as a technique for solving
mazes.

@ Depth is understood as the number of transitions (hops) over edges, starting from an
initial state, needed to reach a given state.

@ BFS algorithm must visit all states awaiting at depth d before it is allowed to visit states at
depthd + 1.

@ DFS algorithm must not visit any state at depth d as long as there exist awaiting states at
detphd + 1.
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Searching graphs

Breadth-first and depth-first search

Breadth-first and depth-first search

1 procedure BreadthFirstSearch(sg)

Closed := 0
set reference from s to its parent to null
Open := {sp}

while Open # 0 do
remove from Open the state s with the smallest depth
if s is the goal state then return s
generate descendants {t} of s
for all t do
if t ¢ Closed and t ¢ Open then add t to Open
add s to Closed
return null

procedure DepthFirstSearch(sy)

Closed := 0
set reference from s to its parent to null
Open := {sp}

while Open # 0 do
remove from Open the state s with the largest depth
if s is the goal state then return s
generate descendants {t} of s
for all t do
if t ¢ Closed and t ¢ Open then add t to Open
add s to Closed
return null

game ftree:

> initial state s
> empty set of visited states

> queue of states to be visited
> ‘poll’ operation
> solution found
> set their parent pointers to s

> no solution found

> initial state s
> empty set of visited states

> queue of states to be visited
> ‘poll’ operation

> solution found
> set their parent pointers to s

> no solution found
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Breadth-first and depth-first search

@ We assume that states are aware of their depth (programistically: states are equipped with
and integer depth field).

@ When descendant ¢ of s is being created, the depth of ¢ becomes equal to the depth of s
plus 1.

@ Because of the expected order of states visiting, Open set can be implemented as:
FIFO collection (ordinary queue) for BFS,
LIFO collection (stack) for DFS.

@ For graphs with size known in advance (known number of states / vertices) the Closed set
can be implemented as an ordinary array of visits.

@ For large graphs with size unknown in advance, more advanced data structures are
needed to implement Closed set, e.g. hash map or red-black tree.

ame trees
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Searching graphs = Dijkstra’s algorithm

Dijkstra’s algorithm

E. Dijkstra (1959), “A note on two problems in connexion with graphs”, Numerische
Mathematik, 1(1), 269-271.

[http://www-m3.ma.tum.de/foswiki/pub/MN0506/WebHome/dijkstra.pdf]

Algorithm for finding shortest paths in a graph.

Often formulated in a way allowing to find all shortest paths between a selected source
vertex and all remaining vertices — single-source all shortest paths.

Can be modified to stop earlier, i.e. when a particular goal vertex is reached.

Notation:

g(s) — exact “travelled” cost from sj to s,
A(s — t) — cost of transition from s to f.

ame trees
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Searching graphs = Dijkstra’s algorithm

Dijkstra’s algorithm

procedure Dijkstra(sy) > initial state s

Closed := 0 > empty set of visited states

1
3 g(sg) =0 > cost travelled from start
4 set reference from s to its parent to null
5 Open := {sp} > queue of states to be visited
6 while Open # 0 do
7; remove from Open the state s with the smallest g(s) > “poll” operation
8 if s is the goal state then return s > solution found
9 generate descendants {t} of s
10 forall t do
11 if t € Closed then continue > t already visited
12 g(t):=g(s) +A(s > 1)
13 set reference from ¢ to its parent to s
14 if t ¢ Open then
15 add t to Open
16 else
17 if new g(t) is smaller than value known so far then
18 replace t in Open with the new one
19 update position of ¢ in Open
20 add s to Closed
21 return null > no solution found

game ftree:
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Dijkstra’s algorithm

@ Convenient data structure for Open: priority queue (binary heap, MIN-oriented).

Complexity of poll operation (polling minimum state from Open): O(logn).

Complexity of adding a state to Open: optimisitic O(log 1), pessimistic O(1), amortized
O(log n).

Complexity of replacing a state in Open: O(n) for standard priority queue.
Convenient data structure for Closed (especially when graph size unknown): hash map.
Complexity of checking if a state present in Closed: O(1).

Complexity of adding a state to Closed: optimistic O(1), pessimistic O(n), amortized O(1).
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Searching graphs = Dijkstra’s algorithm

Dijkstra’s algorithm

@ Proof of path optimality: With respect to the returned state s*, all states s residing in Open
at stop moment have costs g(s) > g(s*). Also, it is known that all states reachable from s
using paths with costs smaller than g(s*) have already been processed since the cheapest
state is polled in each step of main loop. m

@ Considered to be uninformed search algorithm.
@ If A(s — t) = 1 for any s, t being neighbors then Dijkstra’s algorithm is equivalent to BFS.

ame trees




algorithm

Example 1

@ [Initial vertex: 0. Goal vertex: 7.

@ BFS — order of visits: (0,1,2,5,3,4,6,7), path: (0,1,3,7), cost: 6.0.
@ DFS — order of visits: (0,1,3,7), path: (0,1, 3,7), cost: 6.0.
@ Dijkstra’s algo. — order of visits: (0,2,1,5,4,3,7), path: (0,2,1,3,7), cost: 5.0.
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Searching graphs = Dijkstra’s algorithm

Example 1 — BFS

@ Initial vertex: 0. Goal vertex: 7. @ BFS — search graph on successive steps:

[Results generated by SaC library: https://pklesk.github.io/sac, illustrations owing to: Graphviz https://waw.graphviz.org.]

game ftree:
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Example 1 — BFS

@ Initial vertex: 0. Goal vertex: 7. @ BFS — search graph on successive steps:
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Example 1 — BFS

@ BFS — search graph on successive steps:

@ [Initial vertex: 0. Goal vertex: 7.
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Example 1 — DFS
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Example 1 — DFS

@ Initial vertex: 0. Goal vertex: 7. @ DFS — search graph on successive steps:
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Example 1 — DFS

@ Initial vertex: 0. Goal vertex: 7. @ DFS — search graph on successive steps:
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Example 1 — Dijkstra’s algorithm

@ [Initial vertex: 0. Goal vertex: 7. @ Dijkstra’s algorithm — search graph on
successive steps:
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Example 1 — Dijkstra’s algorithm

@ [Initial vertex: 0. Goal vertex: 7. @ Dijkstra’s algorithm — search graph on
successive steps:
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ample 1 — Dijkstra’s algorithm

@ [Initial vertex: 0. Goal vertex: 7. @ Dijkstra’s algorithm — search graph on
successive steps:

game tr
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Dijkstra’s algorithm

Example 1 — Dijkstra’s algorithm

@ [Initial vertex: 0. Goal vertex: 7. @ Dijkstra’s algorithm — search graph on
successive steps:




Searching graphs = Dijkstra’s algorithm

“Geographical” graph

@ Graph generated synthetically: 100 vertices, 10% of possible edges.

@ Vertices placed randomly within [0, 1] X [0, 1] square, except for initial and goal state —
(0,0) and (1, 1), respectively.

@ Edge weights (transition costs) proportional to Euclidean distances with small random
perturbations.

@ Shortest path (0,18, 14, 64, 60, 10, 5,99) with cost ~ 149.52.
@ Dijkstra’s algorithm visits all states before finding the shortest path for this graph.

Alg r s aphs ame trees
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Searching graphs = Best-first search

Best-first search

@ ]. Pearl (1984), Heuristics: Intelligent Search Strategies for Computer Problem Solving,
Addison-Wesley.

[http://mat.uab.cat/ alseda/MasterOpt/Judea_Pearl-Heuristics_Intelligent_Search_Strategies_for_Computer_Problem_Solving.pdif]
@ The most promising (“best”) state is always expanded in first order.

@ Quantitative assessment of how promising s is, made by means of a heuristic function h(s)
— informed search.

@ Various possibilities to construct h(s):

@ based on static information contained in s,

@ based on information collected along the way from s to s,

@ based on general knowledge about the problem and about properties of the goal
state (solution).

@ By convention i(s) > 0. Small values suggest closeness to solution.

@ Best-first approach is focused on achieving the solution fast, via any path. One does not
care about path minimization (the notion of path cost does not exist).

@ Data structures (again): Open (priority queue), Closed (hash map).
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Searching graphs

Best-first search

1
)
4

6

procedure BestFirstSearch(sy)
Closed := 0
calculate h(sp)
set reference from s to its parent to null
Open := {sp}
while Open # 0 do
remove from Open the state s with smallest h(s)
if s is the goal state then return s
generate descendants {t} of s
forall t do
if t € Closed then continue
calculate h(t)
set reference from ¢ to its parent to s
if t ¢ Open then
add t to Open
else

if new h(t) is smaller than value known so far then

replace t in Open with the new one
update position of ¢ in Open
add s to Closed
return null

Best-first search

> initial s

> empty set of visited states

> heuristic according to provided recipe
> queue of states to be visited

> “poll” operation

»> solution found

> t already visited

> e.g. when /i(s) depends on information along path

> no solution found

game ftree:
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Sudoku — example 1

° Lezel*hir%: — @ Best-first search + “empty cells” heuristic,
8 * % PR ”
descendants at “minimum cell”,
8 E 7 * 1 * 4 *
closed states: 222, open states: 14
* 4 * | * 2 * | ok 3 *
3 7 4 * * 9 *  F
E I I 3 E B
* ¥ 5 L 3 2 1
* 1 * | 6 * | ok 5 *
* 5 * 8 * 2 E 6
* 8 E 2 B N B
l
761543289
832|(791|645
549(628|137
374(215(9638
128|936(574
6951487321
417|369(852
953872416 B o
[time: 7ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]
286|154|793
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Sudoku — example 2

° Le\iel*hird: @ Best-first search + “empty cells” heuristic,

9 * * % e s ”

descendants at “minimum cell”,
* 5 * 1 2 4 E

R closed states: 418, open states: 41
3 * | ¥ Ok ¥ 1 6 *
9 * 8 * Ok Ok |k F F
* 7 E N 9 *
E R B R 2 * 5
* 9 1 * * 5 *
X 7143 9% 2%
4 * ok | X ¥ 7 * kX

l
814(976(532
659|123|478
732(854(169
948[265(317
275/341|896
163|798(245
391(682(7514
587(439|621 ot
[time: 19 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

426|/517|983

ame trees
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Sudoku — ,,Qassim Hamza”

@ Level very hard:

* X X

7

*

* *x QI ¥ ¥ O\ * »

* W ¥ x = x| x x

*
*
*
*
5
*
*
7

¥ * N *» x Q1 % x»

* 00 ¥ % QO x| %

* % x| ox ¥ O % ¥

¥ *» O\ ¥ ¥ ¥ x x Q0

* O ¥ * = x| x LW ¥

N % %3 % ¥%[—= x x

O N U0 3 O\ —m W
AN W O[O — U1 NI N

N =01 N W o O
= O N O U1l o N

U100 O[O W N[N [
W N [ 00 N[O Ul oy

B = O\ W U1 O N oo
O NN B PN O

N U1 W\ O |~ O

@ Best-first search + “empty cells” heuristic,
descendants at “minimum cell”,
closed states: 525, open states: 40

[time: 70 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]
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Sudoku — other heuristic

@ Identify s with a two-dimensional array (board).
@ Let s(i,j) denote the contents of cell (i, ).

@ Let (s, i,) denote set of possible values (digits) for cell (i, j) once we substract from set
{1,...,9} values present in i-th row, j-th column and subsquare that contains cell (i, j).

@ “Sum of remaining possibilities” heuristic:

h(s) = Z Z #1(s, i, ). 1)
i

ame trees
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Sudoku — example 1

”

@ Level hard: @ Best-first search + “sum of remaining possibilities
* ok k[x x o x[Q x4 heuristic,
8 * *|7 * 1|* 4 % descendants at “minimum cell”,
* 4 oH|x D Kx 3 closed states: 304, open states: 20
3 7 4 * * 9 *  F
E I I 3 E B
* ¥ 5 L 3 2 1
* 1 * | 6 * | ok 5 *
* 5 * 8 * 2 E 6
* 8 E 2 B N B
|
7615432809
832(791|645
549|628|137
374(215|968
128(936(574
695(487|321
417|369|852
953(872|416
286|154|793 [time: 16 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]
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Sudoku — example 2

”

@ Level hard: @ Best-first search + “sum of remaining possibilities
* % *[Q * *x D heuristic,
*5 %1234 % * descendants at “minimum cell”,
S I I I B closed states: 381, open states: 37
9 * 8 * Ok Ok |k F F
* 7 E N 9 *
E R B R 2 * 5
* 9 1 * * 5 *
**714391*2 %
4 * ok | X ¥ 7 * kX
|
814(976(532
659(123|478
732|854|169
948265317
275[341|896
163|798|245
391(6 82754
587(4309|621
426|517/983 [time: 16 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

ame trees




Searching graphs = Best-first search

Sudoku — ,,Qassim Hamza”

@ Level very hard:

* X X

7

*

* *x QI ¥ ¥ O\ * »

* W ¥ x = x| x x

*
*
*
*
5
*
*
7

¥ * N *» x Q1 % x»

* 00 ¥ % QO x| %

* % x| ox ¥ O % ¥

¥ *» O\ ¥ ¥ ¥ x x Q0

* O ¥ * = x| x LW ¥

N % %3 % ¥%[—= x x

O N U0 3 O\ —m W
AN W O[O — U1 NI N

N =01 N W o O
= O N O U1l o N

U100 O[O W N[N [
W N [ 00 N[O Ul oy

B = O\ W U1 O N oo
O NN B PN O

N U1 W\ O |~ O

4

@ Best-first search + “sum of remaining possibilities”
heuristic,
descendants at “minimum cell”,
closed states: 5267, open states: 452

—
=

Z / W

7

= ,"////}?”"'1: i\
i

[time: 208 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]
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Sudoku — comparison of heuristics

@ Comparison for 50 sudoku boards — source:

https://projecteuler.net/project/resources/p096_sudoku.txt]
ps://p Pproj P

@ Best-first search + “empty cells” heuristic:
@ Average number of closed states: 166.92.
@ Average number of open states (at stop moment): 14.32.
9 Average time: 11.88 ms.

@ Best-first search + “sum of remaining possibilities” heuristic:
@ Average number of closed states: 176.64.
@ Average number of open states (at stop moment): 15.08.
@ Average time: 13.16 ms.

game tr
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Searching graphs = Best-first search

All 4 x 4 sudokus

@ Solutions: 288.

R R 42131 42|31 132 4
R — 13|42 13|42 . 4 2|13
R 2 4|13 ’ 3 1|2 4 ’ ’ 31|42
S e 31|12 4 2 4|13 2 4|31

ahdviddibbndiradhdisdabdidindaddmbbn

@ Closed states: 2273, open states: 0.

ame trees
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P. Hart, N. Nilsson, B. Raphael (1968), “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths”, IEEE Transactions on Systems Science and Cybernetics, 4(2),
100-107.

[http://ieeexplore.ieee.org/document/4082128/]

Informally, A* algorithm can be seen as a combination of Dijkstra’s algorithm and
Best-first search (or a more general form of those).

Function deciding about the order of states polled from Open queue is of form:

f(s) = 8(s) + h(s), @)

where: g(s) — exact travelled cost from s to s, whereas h(s) — heuristic estimation of cost
remaining from s to the goal state.

Since /1 is a heuristic then also is f.

For shortest paths finding, h must be a so called admissible heuristic —i.e. a lower bound
on remaining cost — it must not overestimate the true cost.

For geographical graphs, the distance along straight line (Euclidean) is admissible
heuristic for certain.

Data structures (again): Open (priority queue), Closed (hash map).
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Searching graphs

1: procedure AStar(sy) > initial state sq
2 Closed := 0 > empty set of visited states

> distance covered from start

k 8(s0) :=0

4 calculate h(sp) > heuristic according to provided recipe
5 flso) = g(s0) + h(sp) » sum deciding about order of Open queue
6 set reference from s to its parent to null

7 Open := {sp} > queue of states to be visited

8 while Open # 0 do
9 remove from Open the state s with smallest f(s) > ‘poll’ operation
10 if s is the goal state then return s > solution found

11 generate descendants {t} of s

12 forall t do

13 if t € Closed then continue > t already visited
14 gt) ==g(s) +A(s > 1)

15 calculate h(t)

16 F(8) = g(t) + k()

17: set reference from ¢ to its parent to s

18 if t ¢ Open then

19 add t to Open

20: else

21 if new f(t) is smaller than value known so far then

22 replace t in Open with the new one

23 update position of t in Open

24 add s to Closed

25 return null > no solution found

game ftree:




Theorem “path optimality for admissible heuristic”

When A* algorithm, using an admissible heuristic, finds the goal state then the path associated with it is
the shortest.

Proof: At stop moment (line 10) the aglorithm returns state s* with travelled cost g(s*). Since s*
satisfies the stop condition then h(s*) = 0. For all states s residing in Open at stop moment it is
known that f(s) > f(s*). Among these states three cases can be distinguished. Case 1: a state s
satisfies the stop condition, i.e. i(s) = 0, but g(s) > g(s*), because f(s) > f(s*). Case 2: a state s does
not satisfy the stop condition, i.e. h(s) > 0, but can potentially be driven to the goal state, and
currently has the cost g(s) < g(s*); knowing that h(s) is a lower bound on the remaining cost and
that f(s) > f(s*), then the true cost of reaching the goal state, traveling through s, must satisfy
inequalities: g(s) + A(s — s*) > g(s) + h(s) > g(s*). Case 3: a state s has h(s) > 0 and g(s) > g(s*) —
irrelevant. m

P. Klesk (KMSIiMS, W1, ZUT) Algorithms for searching graphs and game trees
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Monotonous heuristic

@ Additional useful notion: monotonous heuristic.

@ We say that h is monotonous if for all pairs s, t (where ¢ is a descendant of s) the following

inequality holds:
fls) <f(), 3
which can be rewritten as
8(s) + h(s) < g(t) + h(t) 4)
h(s) < g(t) — g(s) + h(t) 5)
h(s) < Als — t) + h(t). (6)

@ The above is a form of triangle inequality: heuristic at s must not be greater than the cost of
s — t transition plus heuristic at t.

@ The equality case in (6) occurs only when one travels towards the goal state along a
straight line (with respect to the metric associated with the given graph).

@ If a heuristic is monotonous than it is admissible.

ame trees
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“Geographical” graph (again)

@ Graph generated synthetically: 100 vertices, 10% of possible edges.

@ Shortest path (0,18, 14, 64, 60, 10, 5,99) with cost ~ 149.52.
@ Dijkstra’s algorithm visits all states before finding the optimal path.
@ A’ + Euclidean distance — closed states: 18, open states: 38 — informed search.
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Good and bad (overestimating) heuristic

@ Good:
hi(s) = [(sx — $1)* + (sy — 5;)? @)
or hy(s) = Isx — syl + Isy — sy (8
@ Bad:

Ba(s) = 4 yJ(sx = 53)% + (sy = 5y)?

or hy(s) = 4(|sx —syl+ sy — s;l)
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Sliding puzzle

@ Sliding puzzle (n? — 1-puzzle):
Starting from an initial state and sliding tiles into the empty space (tile numbered as 0),
the task is to reach the goal state (with numbers {0, 1, ...,n" — 1} ordered in successive
rows) in the fewest number of moves.
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Sliding puzzle — heuristics

@ “misplaced tiles” — number of tiles at incorrect positions (not counting the ‘0" tile).

@ “Manhattan” — sum of distances (using Manhattan metric) of all tiles from their target
positions (not counting the ‘0’ tile).

hs)= Y Y Ji = LG, j)/n| +]j - s(i,j) mod n]. )

0<ij<n
s(i,))#0

@ “Manhattan + linear conflicts” — as above + counting additional 2 moves implied by
each linear conflict — see:
O. Hansson, A.E. Mayer, M.M. Yung (1985), “Generating Admissible Heuristics by
Criticizing Solutions to Relaxed Models”, Columbia University Computer Science
Technical Reports, https://doi.org/10.7916/D89Z9CW3.

[https://www.researchgate.net/profile/Moti_Yung/publication...]

@ Are the above heurisitcs monotonous?
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Sliding puzzle

@ Search graphs for initial state (0,3,2;4,7,8;1,5,6) and different heuristics.
@ A + “misplaced tiles”

[states: 672, time: 34 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

@ A* + “Manhattan”

[states: 106, time: 21 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

@ A* + “Manhattan + linear conflicts”

[states: 78, time: 16 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

@ Shortest path of length 16: (¢,&,0,8U,L,L,D,R,U,U,L,D,R U, L).

game ftree:
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Sliding puzzle — comparison of heuristics

@ Comparison for 100 random boards for n = 3, each board shuffled with 1000 moves.

@ A* + “misplaced tiles”

@ Average number of closed states: 12263.89.
@ Average number of open states (at stop time): 5865.45.
@ Average time: 28.57 ms.

@ A’ + “Manhattan”

@ Average number of closed states: 1024.44.
@ Average number of open states (at stop time): 588.19.
9 Average time: 8.09 ms.

@ A* + “Manhattan + linear conflicts”

@ Average number of closed states: 530.14.
@ Average number of open states (at stop time): 316.81.
@ Average time: 7.37 ms.
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Sliding puzzle — example

@ A* + “Manhattan + linear conflicts” — search graph in first 5 steps and the last:

Genth = 0.0
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Sliding puzzle — example

@ A* + “Manhattan + linear conflicts” — search graph in first 5 steps and the last:
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Sliding puzzle — example

@ A* + “Manhattan + linear conflicts” — search graph in first 5 steps and the last:
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Sliding puzzle — example

@ A* + “Manhattan + linear conflicts” — search graph in first 5 steps and the last:
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Sliding puzzle — example

@ A* + “Manhattan + linear conflicts” — search graph in first 5 steps and the last:

Geonth = 0.0
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Sliding puzzle — example

@ A* + “Manhattan + linear conflicts” — search graph in first 5 steps and the last:
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A* vs Best-first search

@ A’ + “Manhattan + linear conflicts”

[states: 78, time: 16 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]
Shortest path of length 16: ©,r,0,& u,LL,D,R U, U,L,D,R U,L).
@ Best-first search + “Manhattan + linear conflicts”

[states: 41, time: 13 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

Shortest path of length 18: «,0,0,%,u,L,u,L,D,D,R U, U,LD,R U,L).

game ftree:
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A* vs Best-first search

@ A* + “Manhattan”

[states: 78, time: 16 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]
Shortest path of length 16: ©,&,0,&,u,L,L,D,R U, U,L,D,R U,L).
@ Best-first search + “Manhattan”

[states: 681, time: 32 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

Shortest path of length 134: ®,b,L,0,R R,U,L,L,D,R UL UR,D,RULLD,RUR,D,LLURD,DRULUL.,LLU

game ftree:
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Sliding puzzle — examples for n = 4

@ Selected examples from O. Hansson, A.E. Mayer, M.M. Yung (1985), “Generating
Admissible Heuristics by Criticizing Solutions to Relaxed Models”, Columbia
University Computer Science Technical Reports, https://doi.org/10.7916/D89ZICWS3.

[https://www.researchgate.net/profile/Moti_Yung/publication...]

@ IDA" (Iterative Deepening A*) — memory-economic version of A*, but computationally

expensive.
AB('
* *
no. initial path I DA* IDA states A
state length | (losed | time [s] closed time [s]
and open
85 [4,7,13,10,1,2,9,6,12,81453,011,15 | 44 [15-107 [ 123 17-10°, 1.6-10° 0.9
5 |47,14,13,103,9,12,11,56,151,280 | 56 |2.6-107 | 204 1.6-10°, 1.4-10° 11.7
2 [13,54,10,9,12,8142371,01511,6 | 55 |38-107 [ 312 2.6-10°, 2.1-10° 269
brak RAM (2 GB) przy:
54 | 12,11,0,8,10,2,13,15,5,4,7,3,6,9,141 | 56 | 1.9-108 | 150.5 3.1-10°, 2.5-100 —
brak RAM (2 GB) przy:
1 |14,13,157,11,12,9,5,6,0,2,1,4,8,10,3 | 57 |25-108 | 2123 3.4-10°, 2.8-100 —

[time: 7 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]



https://www.researchgate.net/profile/Moti_Yung/publication/266295551_Generating_Admissible_Heuristics_by_Criticizing_Solutions_to_Relaxed_Models/links/5593f48f08ae5af2b0ecdbaf/Generating-Admissible-Heuristics-by-Criticizing-Solutions-to-Relaxed-Models.pdf
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A* — concluding remarks

@ When h(s) = 0 for all s then: A* = Dijkstra’s algorithm.
@ When g(s) = 0 for all s then: A* = Best-first search.
@ The better information carried by & the less work A* has to do.

@ Monotonicity of a heuristic implies three consequences:
g solution found is optimal (shortest path),
g algorithm itself is optimal with respect to I, i.e. no other algorithm, using /1, cannot
visit fewer states than A" (differences only due to tie-breaking),

9 let ™ denote a perfect heuristic representing the true distance / cost to the goal,
then an algorithm using " is perfect too — visits the smallest number of states
possible (hence originally two names distinguished: A and A*).
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R. Korf (1985), “Depth-first Iterative Deepening: An Optimal Admissible Tree Search”,
Artificial Intelligence, 27, 97-109.

[https://pdfs.semanticscholar.org/7eaf/535ca7f8d1e920e092483d11efb989982f19.pdf]

For some suitably large problems, A* may exhaust RAM memory (very large Open and
Closed sets).

IDA* can be seen as memory-economic version of A*.
IDA* does not keep evidence of visited states — no Closed set.
IDA" keeps in memory only the states that are on currently studied path.

The algorithm can be formulated recursively (with no Open set) or traditionally with a
main loop (then only a small Open set occurs).
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IDA* — sketch

@ The algorithm uses h(sg) value to establish an initial search horizon:
H = f(s0) = 0 + h(sp). (10)

@ Then, it studies various paths outgoing from sj (e.g. with a depth-first approach).
@ If the goal state is reached within H, then it is returned.

@ Any state “touched” outside H is not expanded further, but the information about cost
observed for that state is useful to establish the next search horizon:

H = mi } 11
{S;EIEQH}f(S) (11)

@ Once all the paths within H are exhausted, the horizon is deepened i.e. H := H” and whole
process is repeated.
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IDA” recursively

1. procedure RecursivelterativeDeepeningAStar(s) > initial state sg
2 8(sp) =0 > cost travelled from start
3 calculate h(sp) > heuristic according to provided recipe

L flso) = 8(so) + h(sp)

set reference from s to its parent to null

k H := f(sg) > initial search horizon
7: while true do

8 (s,H’) :=Search(sg, H)

9 if s #null then return s > solution found
10 if H' = oo then return null > no solution found
11 H:=H

1: procedure Search(s, H)

2 if f(s) > H then return (null, f(s))

3 if s is the target state then return (s, g(s)) > solution found
4 H =0

generate descendants {t} of s

6 forall t do

7 g(t) =g(s) + A(s = t)

8 F(#) == g(t) + h(t)

9 (u,H"") :=Search(t, H)

10 if u #null then return (1, g(1)) > solution found
11 H’ := min{H’,H""} > deepening the horizon

return (null, H’)

game ftree:
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IDA* non-recursively

1. procedure IterativeDeepeningAStar(s() > initial state sq
2 8(sp) =0 > cost travelled from start
calculate h(sp) > heuristic according to provided recipe

& flso) = &(s0) + hlso)
5 set reference from s to its parent to null

6 Open := {sp} > queue of states to be visited
7 H:=f(sg), H =00 > initial and next search horizons
8 while Open # 0 do

9 remove from Open the state s with smallest f(s) > ‘poll” operation

10 if g(s) > H then
11 H’ := min{H’,f(s)}

12 if Open = ( then
3 H:=H’,H’ := o, Open := {so} > deepening the horizon
14 continue
15 if s is the target state then return s > solution found
16 generate descendants {t} of s
17: forall t do
18 gt):=8()+A(s = t)
19 calculate h(t)
20 f(t) =gt +(t)
21 set reference from ¢ to its parent to s
22 if t ¢ Open then
23 add t to Open
24 else
25 if new f(t) is smaller than value known so far then
26 replace t in Open with the new one
27 update position of ¢ in Open
28 return null > no solution found

game ftree:
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Searching game trees

@ Commonly, two-person games considered: chess, checkers, GO, ...
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@ Game — a situation of conflict, where players have opposite goals, and where we have
clearly defined rules.

@ Problem of searching game tree:
Given a game position (in particular, an initial position), the task is to provide
quantitative evaluations (scores) for particular moves at current player’s disposal. An
evaluation should represent exact or approximate payoff for the player if he chooses a
given move, assuming the optimal counter-play by opponent.
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Min-Max algorithm

Sketch: given an initial position, a tree of game states is expanded up to the imposed
depth. Terminal positions (leaves) are associated with quantitative evaluations. Tree
traversal follows, and evaluations are propagated up the tree. In effect, direct descendants
of the initial state are evaluated too (and so are possible initial moves).

Position evaluation function is a heuristic function working according to people’s
knowledge and intuition about the game.

E.g. for chess: difference between materialistic value of white and black pieces.
Commonly, each player is named as: maximizing or minimazing player.

The win of minimizing player is represented by —oo.

The win of maximizing player is represented by +oco.

When game tree is suitably small (or when studied is a strict endgame) and true terminal
states are reached, then possible values of leaves are: —co, +00, 0 (tie). In that case,
heuristic evaluation is not needed.
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Min-Max — illustration
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Min-Max — illustration
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Min-Max — notions and notation

@ half-move (or ply) — a move by one of players; moving by one tree level is by convention
counted as =1; 2 half-moves (made by both players) are treated as a whole move.

@ branching factor — average or constant number of moves for a player in the given game;
commonly, denoted by b (e.g. for chess b ~ 40 in the middle game).

@ search horizon — imposed number of tree levels to be studied; commonly, denoted by D.

@ horizon effect — general flaw of all minimax procedures implied by the limited search
depth; this phenomenon means that a state residing just outside the horizon can
significantly differ in its evaluation (with respect to parent) and e.g. turn out catastrophic
for a player, even though its ancesteors seemed attractive (or vice-versa).

@ Quiescence — helper technique that partially mitigates horizon effect; it consists in
expanding states on the horizon frontier (or behind it) until so-called quiet positions are
reached (e.g. with no possible captures).
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Min-Max algorithm

1: procedure MMEvaluateMaxState(s, d, D)

2 if IsTerminal(s, d, D) then return h(s) > h(s) — heuristic evaluation of position
3 Vi=—-0

4 generate descendants {t} of s

5 forall t do

6 w :=MMEvaluateMinState(t, d + %, D)

7 if s is the root state then memorize w as the score of s — t move

8 v := max{v, w}

9 return v

1. procedure MMEvaluateMinState(s, d, D)

2 if IsTerminal(s, d, D) then return h(s) > hi(s) — heuristic evaluation of position
3; V=00

4 generate descendants {t} of s

5 forall t do

6 w :=MMEvaluateMaxState(t, d + %, D)

7 if s is the root state then memorize w as the score of s — t move
8 v := min{v, w}

9 return v

game ftree:
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Min-Max — stop points

@ IsTerminal(s,d, D) — a routine method that checks if we are at stop point, implemented
accoring to the game rules.

@ Commonly, any of the following condition should be satisfied:
@ d > D and s is quiet,
9 Ni(s) = £o0 — s is the win state,
@ Ji(s) # +oo, but s is a draw state by the rules
(e.g. for chess: stalemate, perpetual check, three-time repetition of position).
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Chess — position evaluation

@ Example of a function proposed by C. Shannon (1949):
f(s) = 200(Ks — KZ) + 9(Qs — Q) + 5(Rs — R}) + 3(Bs — B, + Ny — N2) + 1(P = P’)  (materialistic)
—05(Ds — D + Ss — S, + Is — I) + 0.1(Ms — MY),  (positional) (12)

where K, Q, R, B, N, P denote counts of: kings, queens, rooks, bishiops, knights and pawns;
D, S, I denote counts of pawns that are: doubled, blocked, isolated;
M denotes mobility (number of moves at disposal);
the ” (prime symbol) denotes same features for the opposing side.
@ Commonly in contemporary chess engines, evaluations expressed in
so-called centipawns.
@ One pawn = 100 centipawns. Smallest positional advantage is worth 1 centipawn.

@ Elements taken into account:

control over board center,

activeness of pieces (and their “connectivity”),
pawn structure,

king safety,

pawns close to promotion,

space,

€6 606660

o
@ Popular are also approaches self-tuning a parametric evaluation function (e.g. based on
genetic algorithms).
. Klesk (KMSIiMS, W1, ZUT) Al s for searc] graphs ame trees
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Checkers — position evaluation

@ Example of materialistic and positional heuristic (M. Bozykowski, 2009):

f(s) =13(Ps — P;) + 85(Ks — K;)  (materialistic)
+6(Ts — To) + 1(Is — I}) = 1(Fs — F}), (positional) (13)

where: P, K denote counts of pawns and kings, respectively;
T, 1, F denote counts of pawns that are: 1 square away from promotion, incapturable,
frozen.

@ Example of materialistic and row-oriented heuristic (M. Bozykowski, 2009):

9
£ =Y wi (Po(i) = P11 = ) +12(K; = KY), (14)
i=1

where: Ps(i) denotes the number of pawns in i-th board row (for a board with 100 squares);
integer weights tuned genetically: w = (2,1,2,2,2,2,1,3,6);
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Min-Max — computational complexity

@ R; — number of states that must be visited in a tree with d levels, in order to get to know
the value of given state — sum of geometric sequence.
@ Recursive approach (useful for analysis of more advanced tree-search algorithms):

Ro=1;
Ry =1+bR;q. (15)
@ Expansion:
R;=1+DbRy4

=1+b(1+bRy_p)=1+b+b*Ry_»

(16)
d+1 _
=1+b+b2+~~~+bde,d=b !
b-1
b b 14 _ o i
—_— e — < ~
< g = o P <2~ 0 (17)
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Many independent discoverers: (Samuel, 1952), (Edwards and Hart, 1963), (Brudno,
1963), (Newell and Simon, 1958; 1976).

Exact analysis: D. Knuth, R. Moore, R. (1975), “An analysis of alpha-beta pruning”,
Artificial Intelligence, 6(4), 293-326.

[https://pdfs.semanticscholar.org/dce2/6118156e5bc287bca2465a62e75af39¢7e85.pdf]
Belongs to branch and bound class of algorithms.

At operation time two values are tracked along the tree:
a — guaranteed so far pay-off for the maximizing player,
p — guaranteed so far pay-off for the minimizing player.

On invocation for the root state, one imposes a = —oo, § = 0.
Children states (and their subtrees) analyzed as long as a < §.

Whenever a >  we stop to analyze subsequent children (and their subtrees) — they shall
not affect result for the whole tree, they are effect of non-optimal play by one of players.
a > B is a logical contradiction; equality case can be additionally included to pruning
because it does not introduce an improvement of result.

Despite tree reductions, a—f pruning algorithm yields exactly same results (move
evaluations) as Min-Max.
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a—p pruning

I: procedure AlphaBetaEvaluateMaxState(s, d, D, a, )

2 if IsTerminal(s, d, D) then return h(s) > h(s) — heuristic position evaluation
3 generate descendants {t} of s

4 forall t do

5 v :=AlphaBetaEvaluateMinState(t, d + %, D, a, )

6 if s is the root state then memorize v as the score of s — t move

7 a := max{a, v}

8 if a > p then return o > cut-off (!) — subsequent ¢ states not studied
9 return o

1. procedure AlphaBetaEvaluateMinState(s, d, D, a, f)
2 if IsTerminal(s, d, D) then return h(s) > hi(s) — heuristic position evaluation

3 generate descendants {t} of s

4 for all t do

5: v :=AlphaBetaEvaluateMaxState(t, d + %, D, a, B)

6 if s is the root state then memorize v as the score of s — t move

7 B :=min{B, v}

8 if @ > p then return > cut-off (!) — subsequent f states not studied
9 return f§
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a—f pruning — example 1
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a—f pruning — example 2
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a—f pruning — complexity

Computational complexity depends on the order of visiting descendants (children states).
It is favourable when cut-off causing descendents are closer to the beginning of the list.

There exist some helper techniques attempting to suitably order descendants and thereby
increase cut-off frequency (but in general, optimal order is not known in advance),

In pessimistic case (for d levels): O (bd).

In optimistic case (for d levels): O (bd / 2).
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a—f pruning — example 3

a=-0,67
lg:oo
7777777777777777777777777777 MAX
1.1
a=—oco 1 =6 a=6
B=s0:76 = 0,86 B=00,9,7
777777777777777777777777777777777777777777777 MIN
a = foo,1,7 =-00,%49 a=-00,6 a=4#48 =6 a =49 @ =6,10 a=6,7
B =7 B=7 Bf g =8 BE = =
77777777777777777777777777777777777777777777 - - MAX
1 2 3 .5 6 8

game ftree:
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a—f pruning — example 3a

game ftree:
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a—f pruning — example 3b

MIN

game ftree:
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a—f pruning — optimistic complexity

@ We know either exact value of a state, or bound (lower or upper) on that value.

@ To establish the exact value, it suffices (in optimistic case) to know:
exact value for 1 child and bounds for b — 1 remaining children.

@ To establish a bound, it suffices (in optimistic case) to know:
exact value for 1 child.

@ R; — minimum number of states (distant by d levels from given state) one must visit to
establish the exact value.

@ S5; — minimum number of states (distant by d levels from given state) one must visit to
establish a bound.

@ Border values: Rg = Sy = 1.
@ Recursions:

Ri=Ryq+(b-1)S4-1; (18)

Sq=Ry_1. (19)
@ By joining them, we obtain:

Ri=Rj1+ (b -DRy2. (20)

@ For the example from previous slide: R3 = b* +b—1=11.
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a—f pruning — optimistic complexity

@ Estimation of optimistic number of states:

Ri=R4-1+ @0 —-1DRs2
=Ri2+(0-1DRg-3 + (b - 1R4—2
= bRy + (b - DRy-3
<bRj_+(b-1Ry—
=(2b-1)R4-2
< 2bRy 5. @1)

@ Effective branching factor is smaller than 2b for every 2 levels.
Hence, for one level it is smaller than \2b.
@ Expansion:

Ry < 2bRy_5 < (2b)*Ry—s < (2b)°Ru_g < - -+ < (2bY*Ry_ok (22)
< (2b)d/2Rd72d/2 = (2b)¥2Ry ~ O(b¥?) = O (( \/E)d) (treating d as fixed)  (23)

@ Simplfied scheme: O(b-1-b-1---b-1) — d/2-times b.
@ In average case the complexity can be shown to be ~ O (b3d/ 4).
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Initial tree fragments for checkers

@ Min-Max + Quiescence, depth (for quiet positions): 1.0, states: 86

, : b :

@ «a-p pruning + Quiescence, depth (for quiet positions): 1.0, states 78:

-

@ Min-Max + Quiescence, depth (for quiet positions): 1.5, states: 693

WWWWWWWWWWWWW

@ o-p pruning + Quiescence, depth (for quiet positions): 1.5, states: 323

e S e Nt o

[Results generated by SaC library: https://pklesk.github.io/sac, illustrations owing to: Graphviz https:

wW.graphviz.org.]



https://pklesk.github.io/sac
https://www.graphviz.org
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Checkers endgame — example 1

@ White to move and win in 4 moves:




Searching game trees | a-f pruning

Checkers endgame — example 2

@ White to move. Who wins? @ «-p pruning + Quiescence, depth: 5.5, states: 2845
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Checkers endgame — example 3

@ “4kings vs 1 king”

position: results from SaC library:
@ ° Searching with sac.game.AlphaBetaPruning...
¢ Searching done. Time: 1789 ms.

Closed states: 54898
General depth limit: 3.5

6 Maximum depth reached (Quiescence): 4.5
Transposition table size: 52967
s Transposition table uses: 69365

Refutation table size: 4611

Refutation table uses: 0

Moves scores: {B2:D4=1.0985902490825263E308, B2:A3=3000.0}
Best move: B2:D4

<::> Principal variation: [B2:D4, D8:A5, B8:D6, A5:El, D6:G3,

<::> <::> E1:H4, C1:G5, H4:F6:C3, A1:D4]
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@ Tllustration of principal variation: nupsgitub.com/plesk/sac/releases/download/1.0.3/sac-1.03-userguide. pd#page=150]



https://github.com/pklesk/sac/releases/download/1.0.3/sac-1.0.3-userguide.pdf#page=150
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