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In an unknown area (or known only partially) the task is to reach a target
position of given coordinates. Costs of transitions and obstacles are learned
on-the-go during the path is traversed (examples: real mobile robots,
artificial players in computer games).




Example illustration (1)
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Example illustration (2)




Example illustration (3)




General notes on Stentz’s algorithm

Stentz’s algorithm (1994) — properties

@ Also known as D*, with an intention the name is understood as
dynamic A*.

@ Despite its name, carried out in a manner closer to Dijkstra’s
algorithm.

@ Algorithm performs optimal behavior taking into account
information learned so far.
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General notes on Stentz’s algorithm

Stentz’s algorithm — properties

@ Works iteratively — the planned path is derived multiple times.

@ The first run of the algorithm is a backward versions of Dijkstra’s
algorithm — we built a queue of states by going from the goal towards
the start point.

@ During the actual traversal of the path, when a discrepancy between the
knowledge so-far occurs, we update the path.

@ States in the queue are allowed to change their costs multiple times and
to enter the queue multiple times.

@ The algorithm is more effective then multiple executions of Dijkstra’s
algorithm from scratch.
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Notation and map representation

Sets of actions and states

@ Let A denote set of possible actions. In particular, for regular
grid of squares:
A={T,—,1 <}

@ Let X denote set of states. For regular grid of squares:
X = {x},
where i is row index, j is column index.

@ By A(x) set of actions possible for state x shall be denoted.
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Notation and map representation

Executing actions

@ Let t(x,a) (transition) denote a function transiting given state x via
action 2 into a new state x’, i.e.

t(x,a) = x'.

E.g. for grid of squares (x5, =) = x2.

@ Formally, tis a functiont: X x A — X.
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Notation and map representation

Costs of transitions

@ Let c(x,a) (costs of transition) denote a function of taken cost, which has
to be taken when executing in x an action a.

@ Formally, c: X X A — R, U {0}

@ If in x execution of a is impossible (obstacle or map border), then
c(x,a) = oo.

@ Such form of ¢ allows for general map representation, where transitions
to certain state, but from different directions, can have different costs.

@ If, for grid of squares, we want to identify all transition costs to the
same state x;;, then:

c(xi1,, ) = c(xip1j, T) = c(xij-1, =) = c(xijs1, <) = map(i, j).

forall,j.
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Notation and map representation

Initial assumptions

@ In the most pessimistic case we assume complete lack of map
knowledge, except for start and goal coordinates.

@ If we assume that transitions untroubled by anything cost 1 unit,
then in the case of complete unawareness, one shall impose:

Vx,a c(x,a) =1.

In particular, we assume that positions of map borders are not
known as well.
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Notation and map representation

Functions/quantities used in the algorithm

@ Let gcurrent(¥) denote currently known cost of transition from x to goal G.

@ Let gvia(x, x") denote currently known cost of transition from x to goal G,
when traveling via x'.

@ Function gyi, shall in fact be considered only for such x, x” which are
direct neighbors.

@ Letabe an action, s.t. t(x,a) = x’. Then:

gvia(x/ x,) = C(x/ (1) + gcurrent(x,)- (1)
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Notation and map representation

Functions/quantities used in the algorithm

@ Let Q denote the queue of states kept in algorithm (analogically to
Dijkstra’s or A* algorithms).

@ Let V denote the map of visited states.

@ Let gpest(x) denote the best (the lowest) known cost value for x during its
lifetime in Q. It is known that:

Sbest (X) < SQcurrent (X) (2)

@ (Qis ordered according to ghest.
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Notation and map representation

Temporary plan

@ Let p(x) denote a planned action currently assigned to be executed in
state x.

@ The algorithm calculates (multiple times) a temporary plan, i.e. a
certain sequence of actions
pP1, P2, -« Pks Pkt1s- -y

which allow to travel from current start state to goal according to
current knowledge of transition costs c. Therefore, a sequence of states
is in the same time derived:

X1, X2, ooy Xk Xic41s e+ s

such that
X1 = Hxx, p(xk)-
@ A person (agent, robot) shall travel on in accordance with the plan, until

he (it) experiences a discrepancy between known (assumed) transition
cost and a true one.
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Notation and map representation

Core issue of Stentz’s algorithm

@ For certain x assume that there exists a which transits x into its neighbor
x'. If we have that:

gvia(x/ x/) < gcurrent(x)r
then there is a chance that cost geurrent(x) can be reduced.
@ Additionally, if:
gcurrent(x/) < gbest(x)/

then the cost geurrent () is for certain optimal in the light of information
at disposal.

@ When both conditions are met then current(x) is updated to gyia(x, x")
and p(x) is updated to a.
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Algorithm

,Outer” algorithm

e Initialize all gpest, eurrent, via With zeros, and all p with voids.
e Insert goal state G into queue Q.

e In a loop, perform iteratively Stentz’s algorithm, until as its result the start state S is
returned. (at that moment Stentz’s algorithm works equivalently to a backward Dijkstra’s
algorithm)

e Main loop:
@ Carry out current plan py, py, . .. visiting sequence of states xx41 = tH(Xg, ), where x;
denotes current S.

@ If for certain xi it can be observed that executing p; would result in a cost
greater than known c(xx, px), then update c(xy, px) to the true one, and assign:
8via (XK, Xgr1) == c(xg, pk) + gcurrent(xlﬁ-l)/
SQcurrent (xk) = Qvia (XK, Xgr1)-
Abort further execution of plan.

@ If x; = G then stop the algorithm. (stop condition)
© Insert x into Q. Memorize gjast := Seurrent(Xk)- Set S := x¢.
@ Aslongas Q is non-empty or until the condition gpest(x) > glast is not met for all x in

Q:

@ Perform Stentz’s algorithm.




Algorithm

Stentz’s algorithm (part 1)

0 Poll from Q the state x with the lowest gpes-
g If gbest(x) < gcurrent(x)
(it means x has increased its cost while being in Q, and if this cost could be reduced by traveling via
some neighbor for which an optimal cost is known, then one should do so)
@ Foralla e A(x), s.t. c(x,a) < oo, check for x" = t(x,a) if: Qyia(X, x) < geurrent(x) and
Scurrent (x’) < gbest(x)? If SO, then:
o gcurrent(x) = gvia(xr x,)~
Q p(x):=a.

e Forall ’, s.t. there exists a’ € A(x’) causing t(x",a’) = x and c(x’,a") < co:

O Svial¥', %) = c(x’, @) + Geurrent (¥)-

@ Ifx isnotin V then:
o gcurrent(xl) = gvia(x,rx)/ gbest(x’) = gvia(xl/x)-
Q rix):=d.
© Insert x’ into Q.

@ If cost for x’ seems to be incorrect because p(x’) = a’, but gyia (X', X) # Seurrent(*’),

then:

O Scurrent(x’) = ia (¥, %).
@ Insertx’ into Q.
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Algorithm

Stentz’s algorithm (part 2)

e (continuation of loop’s 3 body)
@ If P(x') #a’ and gvia(xl/ x) < gcurrent(x’) then:
(it means that it is better to go from x” via x than to use action p(x’))
@ If geurrent(v) = gbest(¥) then: p(x’) := a’ and insert x’ into Q, because optimal
cost for x is known.
@ Otherwise: gpest(X) := geurrent(x) (if x € Q), and insert x into Q.
© (avoiding cycles in p)
Ifx' e Vand x’ ¢ Q, and
P(x’) #a’ and gvia(xr xl) < gcurrent(x) and gcurrent(x) > gbest(x)/
then insert x” into Q again.

g Put x into V.

19/37
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Example ,dead end” (1)




Example ,dead end” (2)

In figures current in the center, gpeqt in parenthesis, g4, at sides. In description of Q the scheme is: X — gpest(¥){gcurrent(X)}, - - -

(@) (b)
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x = (3,6) polled from Q
3.2 executed for X’ = (2,6) x = (2,6) polled from Q
3.2 executed for X’ = (4,6) 3.2 executed for X’ = (1,6)
3.2 executed for x’ = (3,5) 3.2 executed for X’ = (2,5)

Q:(2,6) — 1{1}, (3,5 — 1{1}, (4,6) = 1{1} Q:(3,5) — 1{1}, (4,6) — 1{1}, (1,6) — 2{2}, (2,5) — 2{2}



Example ,dead end” (3)

-+ (d) (backward Dijkstra’s done)
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x = (3,5) polled from Q
3.2 executed for x’ = (2,5)
3.2 executed for X’ = (4,5)
3.2 executed for X’ = (3,4)
Q:(4,6) —> 1{1}, (1,6) — 2{2}, (3,4) — 2{2}, (4,5) — 2{2},
(2,5) — 2{2}

Q:(4,2) — 5{5}, (1,3). — 5{5}, (5,3) — 5{5},
(6,4) — 5{5}, (1,2) — 6{6}, (4,1) — 6{6},

(2,1) — 616}




Example ,$lepa uliczka” (4)

Plan from current S: (—, —, —, —, —). State (3, 3) reached. Discrepancy experienced for ¢ ((3,3), ).

Q:(3,3) = 3{eo}, (4,2) = 5{5), (1,3) = 5{5}, (5,3) = 5{5), (6,4) — 5{5}, (1,2) — 6{6},

(4,1) — 6l6}, (2,1) — 6{6}
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(3,3) inserted into Q
8last =




Example ,dead end” (5)

After first run of Stentz’s algorithm.
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x = (3,3) polled from Q
3.5 executed for X’ = (2,3)
3.5 executed for x’ = (4,3)
3.3 executed for x’ = (3,2)
Q:(2,3) — 4{4}, (3,2) — 4{c0}, (4,3) — 4{4}, (4,2) — 5{5}, (1,3) — 5{5}
(5,3) — 5{5}, (6,4) — 5{5}, (1,2) — 6{6}, (4,1) — 6{6}, (2,1) — 6{6}




Example ,dead end” (6)

After second run of Stentz’s algorithm.
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x = (2,3) polled from Q
3.2 executed for x’ = (1,3) (neutral)
3.4.1 executed for x” = (3,3) — redirection from x’ onto x
Q:(3,2) — 4{e0}, (4,3) — 4{4}, (4,2) - 5{5},(3,3) — 5{5}, (1,3) = 5{5}
(5,3) = 5{5}, (6,4) — 5{5}, (1,2) — 6{6}, (4,1) — 6{6}, (2,1) — 6{6}




Example ,dead end” (7)

After third run of Stentz’s algorithm.
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x = (3,2) polled from Q
3.3 executed for X’ = (2,2)
3.2 executed for X’ = (4,2)
3.3 executed for x’ = (3,1)
Q:(4,3) — 4{4}, (2,2) = 5{c0}, (3,1) — 5{0}, (3,3) — 5{5}, (1,3) — 5{5}

(5,3) = 551, (6,4) = 5(5}, (1,2) — 6{6}, (4,1) — 66}, (2,1) — 6{6}, (4,2) — eofco

}




Example ,dead end” (8)

... Queue empty after 22 runs of Stentz’s algorithm. Reached state of algorithm:
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Example ,dead end” (9)

Plan from current S: (T, =, —, |, —). State (3,3) reached. Discrepancy experienced for c((3,3), 7).
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(3,3) inserted into Q
Slast =

Q:(3,3) = 5{c0}



Example ,dead end” (10)

Queue empty after 1 run of Stentz’s algorithm.
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Example ,dead end” (11)

Plan from current S: (|, =, T, —, —). State (4, 3) reached. Discrepancy experienced for c ((4,3), —).

708 3la 708 3la
™ @ @ ™ @ @
9 3 2 9 3 2
8 3 8 3
g 6|9 2|3 6|0 2|3

® @ & ® @ @
8 2 1 8 2

9 3 2 9 3

708

4 3 8 4 3

9 3 2 9 3 2

7|8 3la £ 708 3la

™ ® ® @ @ @ ™ @ @

9 8 7 6 5 4 9 5 4

8 7 5 4 3 8 4 3
8|9 7|8 6> 67 5|6 4|5 £ 8|9 4|5

® @ ® ® @ @ ® @ @

(4,3) inserted into Q
Slast =

Q:(4,3) - 4{co}



Example ,dead end” (12)

New plan calculated after 10 runs of Stentz’s algorithm.

Plan from current S: (|, =, —,—, 1, 1). State (4,3) reached. Discrepancy experienced for c((4,3), ).

9 3

ja—r 3> 3|4

[l @ @

9 5 4

s N 3
8lo 4|s

® @ ®

(4,3) wilozony do Q
8last =

Q:(4,3) - 6{c0}



Example ,dead end” (13)

New plan calculated after 4 runs of Stentz’s algorithm.

Plan from current S: (T, <, T, —, —,—|, —). State (2,2) reached. Discrepancy experienced for c((2,2), =).

®

(2,2) inserted into Q
8last =

Q:(2,2) - 5{c0}




Example ,dead end” (14)

New plan calculated after 12 runs of Stentz’s algorithm.

Plan from current S: (T, —, |, =, —, |, ). State (1,3) reached. Discrepancy experienced for ¢ ((3,1), ]).
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Example ,dead end” (15)

New plan calculated after 1 run of Stentz’s algorithm.

Plan from current S: (—, —], |, —). State G = (3, 6) reached.
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Example ,to go through or to go arround?”

c((3,2),—) =2 c((3,2),—) =4
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Example for grid 20 x 20




Concluding remarks

Concluding remarks

@ Vision zone The algorithm enables to introduce larger vision zone, as a neighborhood of
the agent with certain radius. When following the plan py, p,, ... it suffices to update all
discrepancies of function c discovered with such neighborhood. Only the step 4.1 int the
,outer” algorithm requires a change.

@ Larger vision zone should (in average case) improve the path i.e. decrease the tendency to
roam unnecessarily.

@ Algorithm is often presented by introducing labels for states: RAISE, LOWER. Label
RAISE indicates a cost for a state greater than last known in Q (related to step 2.1 in given
Stentz’s algorithm). Label LOWER indicates a cost for a state lower than last known Q
(related to step 3.4 in given Stentz’s algorithm).

@ Practical military applications in exploratory unmanned vehicles e.g.: Automated
Cross-Country Unmanned Vehicle (XUV).
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