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Examples of problems within AI | Searching game trees

@ Commonly, two-person games are considered: chess, checkers, GO, ...
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@ Game — a situation of conflict, where players have contradictory goals, and where clear
rules are defined.

@ Problem of searching game tree:
Given a game position (in particular, an initial position), the task is to provide
quantitative evaluations (scores) for particular moves at current player’s disposal. An
evaluation should represent exact or approximate payoff for the player if he chooses a
given move, assuming the optimal counter-play by opponent.

ZUT) Mathem 3 S definitions of Al




o <
< - ]
1 <@
i gyA
<t <0
S &4
- e <
- >
b} z
z
& m
L%
3| @© i Eirg =
g L& <. &t PP 26 B
o - <06l <t &l o
60 <l ot Er <g i
5 e k) < i et ) o
S di <@ <t <5 o
L Q Rl = - <MW niee | <
7 5 TR AL
-
i~ 3] e
= S - <05 o=
c =i~ ] =i~
2 9] e <G -
= (D) v =] div
= <| e <0 <l
z h S &4 A
LN el A
S - g
£l = o Sh mes -
5| @© <l & - =
o | ewm 1 <l Bl s
< - Siea ) = g
= ! it <] EiL] <
]l SIen i :
fie] o= (- B |- - & >
_ e
.
<| e
Er
S i
P] <l
N
m N =




Examples of problems within AI | Searching game trees

@ Algorithms: min-max, a-f pruning, Scout, ...

@ Refinements: Quiescence, transposition table, refutation table, killer heuristic, . . .

@ Challenges:

[ 2“2 “3 3 )

combinatorial (geometric) explosion of game tree,
computational and memory complexity,

design of position evaluation functions (heuristics),
horizon effect,

games with random elements,

games of imperfect information.




Examples of problems within AI | Searching game trees

Games — initial tree fragments for checkers

@ min-max + Quiescence, depth (for quiet positions): 1.0, states: 86

@ «a-p pruning + Quiescence, depth (for quiet positions): 1.0, states: 78

@ min-max + Quiescence, depth (for quiet positions): 1.5, states: 693
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@ o-p pruning + Quiescence, depth (for quiet positions): 1.5, states: 323

e S e Nt o

[Results generated by SaC library: https://pklesk.github.io/sac, illustrations owing to: Graphviz https:

graphviz.org.]



https://pklesk.github.io/sac
https://www.graphviz.org

Examples of problems within AI | Searching game trees

Games — checkers endgames

@ White to start and win in 4 moves:




Examples of problems within AI | Searching game trees

Games — checkers endgames

@ White to start. Who wins? @ «-p pruning + Quiescence, depth: 5.5, states: 2845
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Examples of problems within AT | Searching graphs

Graphs within Al

@ geographical graphs, mazes, navigations . .. but also puzzles, riddles represented as
graphs, e.g.: sudoku, sliding puzzle, Rubik’s cube, solitaires, Rummikub, packing
problems, etc.
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@ Nodes (vertices) — states of puzzle, edges — possible moves, manipulations transforming
given state into another.

@ Problem of searching graph:
Given an initial graph state, the task is to find a path of transitions (if exists) to a goal
state. Additionally, if stated in the task, the goal is to find the minimum path.

11/61




Examples of problems within AT | Searching graphs

Graphs within Al

@ Algorithms: Dijkstra’s algorithm, Best-first search, A*, IDA".

@ Challenges:

9 state representation,

generation of descendant states,

desing of cost functions (so called: admissible heuristics),
graph size unknown in advance,

fast data structures.

(3“2 3 ]




Examples of problems within AT | Searching graphs

Geographical graphs — examples

@ Synthetic graph: 100 nodes, 10% of possible edges, distances with small perturbations.

@ Shortest path (0,18, 14, 64, 60, 10, 5,99) with cost ~ 149.52.

@ Dijkstra’s algorithm: for the example above, all states must be visited . ..
— uninformed search.

@ A* algorithm + Euclidean distance: closed (visited) states: 18, open states: 38
— informed search.

Mathematical > ry S ons of Al 13 /61




Examples of problems within AT | Searching graphs

Puzzles, riddles, . ..

° Sugloku — level hazd: @ Best-first search + ,,empty cells” heuristic,

894 *6|*** . ”
x o x[g % xlg  x descendants at ,minimum cell”, closed states: 222, open
w7l g aly oo states: 18
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gi%géiggg [time: 46 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]
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Examples of problems within AT | Searching graphs

Puzzles, riddles, . ..

@ Minimum sudoku:
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Mathematical

@ Best-first search + ,,sum of remaining possibilities”
heuristic, descendants at ,,minimum cell”, closed states:
86, open states: 18

[time: 41 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

ons of Al 15/ 61




Examples of problems within AT | Searching graphs

Puzzles, riddles, . ..

@ Size of mimum sudoku for 9 X 9 case — 17 — discovered in 2011.

@ Researchers: prof. Gary McGuire and team, University College, Dublin, Ireland.

[https://maths.ucd.ie/~gmg]

@ Their program showed that each sudoku with 16 givens has at least two solutions.

@ Notall (Zlgé) ~ 3-10'° initial arrangements had to be checked (due to symmetries,
reductions).

@ Complete check lasted from January till December (~ 7 - 10° core-hours).

@ Example of minimum sudoku for 4 X 4 case:

16/ 61



https://maths.ucd.ie/~gmg

Examples of problems within AT | Searching graphs

Puzzles, riddles, . ..

@ Sliding puzzle (n> — 1 puzzle):
Given an initial state, by sliding tiles adjacent to the empty cell (no. as 0), the task is to
reach the goal state — ordered numbers {0, 1,.. ., n? — 1} in successive rows — in as few
steps as possible.

@ Search graphs for initial state (0,3,2;4,7,8;1,5,6) and different heuristics, shortest path of
length 16

A" + “misplaced tiles” A" + “Manhattan”

[states: 672, time: 34 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)] [states: 106, time: 21 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

@ Shortest path of length 16: o,r,0,r,u,LLD,RUULD,RUL.

ns of Al 17 /61




Examples of problems within AT | Searching graphs

Puzzles, riddles, . ..

@ Sliding puzzle forn = 4: (1,8,3,7;6,0,2,11;4,14,10,15;12,13,5,9).
Shortest path of length 28: «,p,0,r & R u,u,u,L,D,D,L,D,R,U,U,L UL D,R,D,D,L,U,U,U).

@ A" + “Manhattan + linear conflicts”, states: 2637.

[time: 47 ms, Intel Xeon CPU E3-1505M v5 2.8 GHz (boost 3.7 GHz)]

@ Hard example: (13,5,4,10;9,12,8,14;2,3,7,1;0, 15,11, 6).
Shortest of length 55:
(R,u,U,L,D,R,D,L,U,UU,R,D,R,D,LU,LD,RUUR,D,D,RUULD,D,R,D,LLUULURDRR,D,D,LUUR,U,ULLD,LU).

States: 4.7 - 10°. Time: ~ 26s5.
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Examples of problems within AI | Optimization problems

Discrete knapsack problem

@ Problem:
Given is a knapsack of capacity C > 0 and a set of items I = {(v1, ¢1), (v2,¢2), - .. (Un, Ci)},
where v; is item’s value and ¢; its capacity. The task is to find such subset I. of I that
maximizes the sum of values and does not exceed knapsack capacity, i.e.:

Z v; — max and Z ¢ <C.

i i
(vj,ci)€ls (vj,¢i)€le

[https://en.wikipedia.org/wiki/Knapsack_problem]
@ Computational complexity? Discrete vs. continuous problem version.

@ Applications: material cutting — wastes minimization, choice of investments wallet,
securitization, key generation for ciphers.

@ Algorithms: dynamic programming, genetic algorithms, ...



https://en.wikipedia.org/wiki/Knapsack_problem

Examples of problems within AI | Optimization problems

Traveling Salesman Problem (TSP)

@ Problem:
Given is a set of 7 cities. Starting from a fixed city, the task is to travel through all the cities
(exactly once) and come back to the city of origin using the shortest (cheapest) path.

[https://optimization.mccormick.northwestern.edu/...] [https//www.math.uwaterloo.ca/tsp/sweden/index.html]
@ Computational complexity?

@ Applications: routing, logistics, DNA sequencing, ...

@ Algorithms: A* + minimum spanning tree, branch-and-bound, integer programming, LKH
(Lin-Kernighan heuristic), approximation algorithms (Christofides, 2-opt, greedy, . ..).



https://optimization.mccormick.northwestern.edu/index.php/Traveling_salesman_problems
http://www.math.uwaterloo.ca/tsp/sweden/index.html

Examples of problems within AI | Optimization problems

Jeep problem

@ Problem:
A jeep at a desert has 1 containers of fuel at disposal, with 1 unit of fuel each. Fuel
consuptionis 1: 1, i.e. 1 unit of fuel per 1 unit of distance. The goal is to maximize the
distance D,,, the jeep can travel from the base into the desert, satisfying the following
rules. At any time the jeep can tank up at most 1 unit of fuel and must not take any
additional fuel with it. The jeep can set off from the base, leave some fuel along the way,
and go back to the base using the fuel remaining in the tank. At the base, the jeep can tank
up using another container and set off once again. When coming across the fuel left along
the way, the jeep can fill up the tank.

@ Solutions for small caes: Dy =?, D, =?, D3 =? and their move sequences.
@ Can one travel arbitrarily far when unlimited n?

@ Approximation algorithms: genetic algorithms, reinfocement learning, . ..

ZUT) Mathem 3 S definitions of Al




Examples of problems within AI | Optimization problems

Jeep problem

@ Solution:
1 1
=1l+=+4+=+-- =H
Du=ltg+gt+ 2n— sz 1=
@ Harmonic number:
H, —1+1+1+ +1
"ot 73 n

@ Euler-Mascheroni constant:
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Examples of problems within AI | Decision, strategy problems

Prisonner’s dilemma

@ Problem: The police have arrested two suspects of a crime. They remain kept in separate
cells. The police do not have sufficient evidence and tries to convince each suspect to
confess and betray his partner in exchange for lighter penalty. The police explicitly offer
the following table of payoffs to each suspect. What should a player in this game (a
suspect) do — stay quiet or betray?

A stays quiet A betrays
Afree to go
B stays quiet | A and B sentenced to 1 year B senteced to 5 years
Asentected to 5 years
B betrays B free to go A and B sentenced to 4 years

@ Iterated prisonner’s dilemma: What strategy should a player undertake in a sequence of
many prisonner’s dilemma games in order to minimize the total penalty? After each
round the players get to know the result.

@ Can the number of games be known in advance?

ZUT) Mathem S definitions of Al
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Examples of problems within AI | Pattern recognition problems

Pattern recognition — examples

@ OCR @ Anti-spam filters.

Word block

Line block
/ / Character block

| 2. Embrace nothing as an Article| of Faith, [or part of Religi-
on, but what the Holy Scriptures are exprefs, or very clear
concerning. You have in thefe Scriptures all that is neceflary
to any Man’s Salvation. 2 Tim, 3. 16.17. Job. 20. 13, Be-

[https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering]

>;//simon-tanner.blogsp 2015/06/text-capture-and- )
[http://simon-tanner.blogspot.com/2015/06/text-capture-and-optical...] [https://pythonmachinelearning.pro/text-classification-tutorial-...]

@ Object detection (faces, pedestrians, @ Computer-Aided Diagnosis (CADX).
vehicles, road signs, ...).

R

[https://archive.ics.uci.edu/ml/datasets/Breast+Cancer...]

[https://www.nature.com/articles/srep24454]
[https://www.researchgate.net/project/Constructions-of-sets-of-integral-...]



http://simon-tanner.blogspot.com/2015/06/text-capture-and-optical-character.html
https://www.researchgate.net/project/Constructions-of-sets-of-integral-images-for-fast-feature-extraction-and-machine-learning-in-detection-tasks
https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering
https://pythonmachinelearning.pro/text-classification-tutorial-with-naive-bayes/
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://www.nature.com/articles/srep24454

Examples of problems within AI | Pattern recognition problems

Pattern recognition — examples

@ Face recognition. @ Part-of-speech/sentence recognition.
S

NP VBD IN NP

DT JJ JJ NN barked at DT NN

o |

the little yellow dog the cat

[https://en.wikipedia.org/wiki/Part-of-speech_tagg

[http://scikit-learn.org/stable/auto_examples/...]

@ Speech recognition.

S p»& [— a

@ Iris recognition.

o | I

[http://www.cs.princeton.edu/ andyz/irisrecognition]

[https://en.wikipedia.org/wiki/Speech_recognition]



http://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html
http://www.cs.princeton.edu/~andyz/irisrecognition
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://en.wikipedia.org/wiki/Speech_recognition

Examples of problems within AI | Pattern recognition problems

Pattern recognition

@ Algorithms:

66O 6CGOCOEO

naive Bayes classifier,

decision trees (CART, ID3, C4.5),

distance-based classifiers (k-NN),

artificial neural networks (MLP, RBF),

support vector machines (SVM),

ensemble classifiers (AdaBoost, RealBoost, Random Forest),
logistic regression,

convolutional neural networks (CNN),

hidden Markov models (HMM),

@ Related issues: feature extraction, overfitting, model complexity selection, regularization,
accuracy testing, . ..
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Examples of problems within AI | Data mining problems

Data mining — examples

Association rules in shopping transactions.
if DIAPERS then BEER

Behavioral rules of social networks users.

Rules in bioinformatics (gene expression).
User preference rules (searches, products).
Rules in sport events, market events, . . .

Algorithms: Apriori and variations.

281 WA
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Examples of problems within AI = Regulation and control problems

Regulation and control

@ Examples:

reversed pendulums,

house heating controllers,

automatic gantry (e.g. for ship loading/unloading),
automatic medication feeders,

image stabilizers in digital cameras,

@ self-driving cars, ...

[ <2 2 3 3 )

@ Algorithms: PID controllers, fuzzy sets — Mamdani—Zadeh controller, Kalman filter,
reinforcement learning (Q-learning), ...
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Examples of problems within AT | Artificial life problems

Artificial life

Cellular automata

— Stephen Wolfram (1980s; thorough analysis of one-dimensional cellular automata).
“The Game of Life”

— John Horton Conway (1970; two-dimensional cellular automata with surprising
behaviors).

Simulations of worlds / ecosystems — populations of individuals with defined senses,
motorics, hunger, agression, ...




Examples of problems within AT | Artificial life problems

Cellular automata

[http://mathworld.wolfram.com/ElementaryCellular Automaton.html]

rude: 30 wele 54 rule G0
rule 30 rule 126 — . st . ‘
gl | [ i
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http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

Examples of problems within AT | Artificial life problems

Cellular automata — ,,rule 30”

Il

DAY

[https//blog.stephenwolfram.com
[http://mathworld.wolfram.com/Rule30.html]

[https://www.youtube.com/watch?v=60P7717-XOQ]

P. Klesk (KMSIiMS, W1, ZUT) Mathematical machines and thinking— elementary problems and definitions of AL 37/61
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http://mathworld.wolfram.com/Rule30.html
https://www.youtube.com/watch?v=60P7717-XOQ
http://blog.stephenwolfram.com/2017/06/oh-my-gosh-its-covered-in-rule-30s/

Examples of problems within AI Artificial life problems

Conway’s “The Game of Life”

@ Earlier, similar ideas due to: John von Neumann, Stanistaw Ulam (1940s).

@ Two-dimensional cellular automata.

[https://bitstorm.org/gameoflife]

@ Rules:

if a full cell has 0 or 1 neighbor then it dies (loneliness),

if a full cell has 4 or more neighbors then it dies (crowdedness),
if a full cell has 2 or 3 neighbors then it lasts alive,

if an empty cell has exactly 3 neighbors then it becomes full.



https://bitstorm.org/gameoflife
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Can machines think? | Turing’s views

Can machines think?

@ No, if thinking is defined as a solely human activity. Then, any machine activity of that
kind can only be called similar to thinking.

g No, if one assumes that in the very nature of thinking there is something secret, mystical.

9 Yes, if one accepts that this question can be decided via an experiment (!), by comparing
machine’s behavior vs. human behavior for some activity with respect to which the term
thinking applies naturally.




Can machines think? | Turing’s views

Can machines think?

Alan Mathison Turing (1912-1954)

@ A.M. Turing, “Computing Machinery and Intelligence”, Mind, 1950.

[https://academic.oup.com/mind/article/LIX/236/433/986238]

@ Turing proposes to consider the question: ,Can machines think?”.

@ It seems necessary to define: machine and to think. Definitions should be good enough to
represent the everyday intuitive meaning of these words.

@ Difficulties: non-strict definitions, ambigous, statistical (if based on surveys) — danger:
the response to the posed question would also be only statistical.

@ Therefore, Turing replaces the original problem with a less ambiguous one — the imitaiton
game.

41/61
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Can machines think? | Turing’s views

“The Imitation Game”

@ Man A and woman B remain in a separate room then the interrogator C.

@ C obtains answers from players denoted as X and Y, and tries to determine whether
X=AandY=B,orX=Band Y = A.

@ The goal for A is to mislead C, so that C misidentifies A as B.

@ Questions posed by a terminal that precludes identificaiton possibilities based on: voice,
smell, etc.




Can machines think? | Turing’s views

“The Imitation Game”

@ Interrogator might ask: , Will X please tell me the length of his or her hair?”.

@ Suppose X is actually A, then A’s answer might therefore be:. , My hair is shingled, and the
longest strands are about nine inches long.”.

@ The goal of B is to help interrogator. Probably, the best strategy for her is simply to tell the
truth.

@ She might add , I am the woman, don’t listen to him!”, but obviously A can do the same.

ZUT) Mathem 3 S definitions of Al 43 /61




Can machines think? | Turing’s views

“The Imitation Game”

@ Turing: What happens if A is replaced by a machine in the game? Will the interrogator be able to
make correct identification as frequently as in the case of human players?

g 2
=

A B

44/61




Can machines think? | Turing’s views

“The Imitation Game”

Example conversation according to Turing:

Q

>

A N Ol N

Please write me a sonnet on the subject of the Forth Bridge?

Count me out on this one. I never could write poetry.

Add 34957 to 70 764.

(After a pause of 30s) 105 621.

Do you play chess?

Yes.

I have K at my K1, and no other pieces. You have only K at K6 and R at R1. It is your move. What
do you play?

(After a pause of 155s) R-R8 mate.

d definitions of Al 45/61




Can machines think? Turing’s views

“The Imitation Game”

Critique by Turing himself:

0 ~+ Strong separation between body and intellect. Artificial skin (if existed) does not make a
machine dressed in it more human.

g — Odds are weighted too heavily against the machine. Think of an opposite game, where human
tries to pretend to be a machine, and immediately is given away by slowness and inaccuracy in
arithmetics.

9 — May not machines carry out something which ought to be described as thinking but which is
very different from what a man does? (strong objection). Obviously, yes. Strong drawback in case
of the negative result from the imitation game.

e ~+ Nevertheless, if a machine can be constructed to play the imitation game satisfactorily, we need
not be troubled by the above objection.

Turing predicted that in 50 years computers shall have a memory of order ~ 10° bits, and be able to mislead about 30% of

interrogators.

46/ 61




Can machines think? | Turing’s views

Objections to Turing’s views

o
o
o
o
o
o
o

Theological objection

“Heads in the sand” objection
Mathematical objection

Argument from consciousness
Arguments from various disabilities

Lady Lovelace’s objection

Argument from extrasensory perception



Can machines think?

Objections to Turing’s views

Theological objection

Thinking is a function of man’s immortal soul. God has given an immortal soul to every man and woman,
but not to any other animal or to machines. Hence no animal or machine can think.

Turing: In scientific sense noone should be bothered by this objection! In theological terms the
following remarks can be given.

Turing: The argument would be more convincing if animals were classed with men, for there is a
greater difference between the typical animate and the inanimate than there is between man and the
other animals.

Turing: Any orthodox view becomes clearer if we consider how it might appear to a member of
some other religious community. How do Christians regard the Moslem view that women have no
souls? Why did Christians accept Copernican theory at last?

Turing: The objection implies a serious restriction of the omnipotence of the Almighty. There are
certain things that He cannot do such as making one equal to two, but should we not believe that
He has freedom to confer a soul on an elephant if He sees fit? All these turn out to be dogmatical

speculations . . ..

Mathematical > ry S ons of Al 48 /61




Can machines think?

Objections to Turing’s views

“Heads in the sand” objection

The consequences of machines thinking would be too dreadful. Let us hope and believe that they cannot
do so.

@ Turing: Also scientifically ridiculous.

@ Turing: Connected to the theological objection — we like to believe that Man is in some subtle way
superior to the rest of creation.

@ Turing: It is best if he can be shown to be necessarily superior, for then there is no danger of him
losing his commanding position.

@ Turing: It is likely to be quite strong in intellectual people, since they value the power of thinking
more highly than others, and are more inclined to base their belief in the superiority of Man on this
power.

Mathematical : ry s ons of AL




Can machines think?

Objections to Turing’s views

Mathematical objection

Basing on certain results from mathematical logic there exist limits to possibilities of discrete states
machines. One of such results is Godel’s theorem (1931): In any logical system, one can construct
statements which cannot be assigned true or false value (cannot be proved or disproved within the system).
E.g.: , The statement I am saying now is false.”

@ Turing: Questions which cannot be answered by one machine may be satisfactorily answered by
another (in other formal system).

@ Turing: Although limits of all machines has been proved, it is often claimed (without proof) that
no such limits apply to human.

@ Turing: Anytime a Godel-like question is posed to machine, the given answer must be wrong. This
gives us an illusionary feeling of superiority. People do make mistakes in answering many more
trivial questions.

@ Turing: Those who hold to the mathematical argument would mostly be willing to accept the
imitation game as a basis for discussion. Those who believe in the two previous objections would
probably not be interested in any criteria.

Mathematical S i : ry s ons of AL




Can machines think? | Turing’s views

Objections to Turing’s views

Argument from consciousness

Prof. Jefferson (1949): (... )Not until a machine can write a sonnet or compose a concerto because of
thoughts and emotions felt, and not by the chance fall of symbols, could we agree that machine equals
brain-that is, not only write it but know that it had written it. No mechanism could feel (and not merely
artificially signal, an easy contrivance) pleasure at its successes, grief when its valves fuse, be warmed by
flattery, be made miserable by its mistakes, be charmed by sex, be angry or depressed when it cannot get
what it want.”

@ Turing: According to the most extreme form of this view the only way by which one could be sure
that machine thinks is to be the machine and to feel oneself thinking. One could then describe these
feelings to the world, but of course no one would be justified in taking any notice.

@ Turing: Likewise according to this view the only way to know that a man thinks is to be that
particular man. It is in fact the solipsist point of view. It may be the most logical view to hold but it
makes communication of ideas difficult. A is liable to believe “A thinks but B does not” whilst B
believes “B thinks but A does not”; instead of arguing over it is usual to have the polite convention
that everyone thinks.

@ Turing: Prof. Jefferson would probably be willing to accept the imitation game as a test rather than
an extreme argument above.
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Objections to Turing’s views

Arguments from various disabilities

“I grant you that you can make machines do all the things you have mentioned but you will never be able
to make one to do X.”

Numerous features X are suggested: be kind, resourceful, beautiful, friendly, have initiative, have a sense
of humour, tell right from wrong, make mistakes, fall in love, enjoy strawberries and cream, make some one
fall in love with it, learn from experience, use words properly, be the subject of its own thought, have as
much diversity of behaviour as a man, do something really new.

@ Turing: No support is usually offered for these statements and comes from a false induction. A
man has seen thousands of machines in his lifetime. From what he sees he draws a number of
general conclusions. Machines are ugly, each is designed for a very limited purpose, when required
for a different purpose they are useless.

@ Turing: Many of these limitations are associated with the very small storage capacity (memory) of
most machines.

@ Turing: Other are a disguised version of objection from consciousness.
@ Turing: The “impossibility of making mistakes” is clearly false. A machine playing the imitation
game must make mistakes (planned and random) in order to be misidentified.

Mathematical S i ry s and definitions of Al
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Objections to Turing’s views

Lady Lovelace’s objection

Lady Lovelace (1842): (... )The Analytical Engine has no pretensions to originate anything. It can do
whatever we know how to order it to perform(...)".

@ Additional meaning of this objection is that a designer of an intelligent system must be
capable to predict all the consequences of such system. The machine cannot surprise us.

@ Turing: Assertion that machines can only do what they are designed to is clearly right. But it is
not the reason for drawing false conclusions out of it.

@ Turing: Human can create, compose, learn because a biological program he is equipped with has
functions like: adaption, ability to change itself (the program) e.g. as a result of observational
interaction with the environment.

@ Turing: It is clearly false, that a designer is able to predict all the consequences of a programme,
even the most remote ones (e.g. after billions of operations) by means of a device under his skull.

@ Examples: artificial life, Conway’s game of life, chaos theory programmes, chess
programmes surprising the grand masters designing them.
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Objections to Turing’s views

The argument from extrasensory perception

If one acknowledges (statistically confirmed) existence of telepathy, then one may consider the following
scenario: let us play the imitation game having as players a machine and a human having strong telepathy
skills. Interrogator could then ask e.g. “what color is the card I am holding?”. And a human would
answer right more frequently than machine.

@ Turing: strong arqument. Telepathy, in general, produces difficulties in many scientific
approaches.

@ Turing: One solution is to strengthen the imitation game by a restriction which makes room
,telepathy-proof” (in a similar sense as sound-proof rooms). This is compliant with Turing’s
postulate about strong body-mind separation in the experiment.
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Turing’s chess test

@ Version 1:
A human plays a chess game against an unknown opponent, and has to decide wether it
is a man or a machine.

@ Version 2:
A human looks at a finished chess game played by to opponents and has to identify each
of them as: human or machine.

@ Garri Kasparov passes Turing’s chess test in version two with success ratio of over 80%.
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Towards Al

Marvin Lee Minsky (1927-2016)

@ M. Minsky, “Steps Toward Atrtificial Intelligence”, Proceedings of IRE, 1961.

[http://ieeexplore.ieee.org/document/4066245]
@ Minsky agrees with Turing’s views.
@ There exist no unified and generally acceptable theory of intelligence.

@ Five main areas can be named within Al: search, image recognition, learning, planning
and induction.



http://ieeexplore.ieee.org/document/4066245
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Minsky’s remarks

On search problems:

@ Minsky: If for a given problem we know the way to check the correctness of a candidate solution,
then we are always able to browse through multiple candidate solutions.

@ Minsky: From a certain point of view all search problems may seem trivial. E.g. think of chess
game tree. It is for sure finite! Each terminal node (leaf) is either a win for white or black or a draw.
By propagating it upwards (min-max procedur) the initial node is also assigned with one of these
three values. In this sense chess is similarly non-interesting as tic-tac-toe.
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Minsky’s remarks

On search problems:

@ Minsky: Usually, it is not difficult to program an exhaustive search procedure, but for every
complex problem it is too inefficient to be practically applied. What good comes from the fact
that we have a programme which will not finish the computation within our lifetime or
even our civilization lifetime?

040 0120

@ Samuel (1959) estimates: checkers approx. 10% states, chess approx. 1 states. Let us
assign generously 1us for each tree node to be analyzed by computer and let us estimate
the number of centuries needed to analyze the whole game tree for checkers:

1040 1040 1040
> = — =10% [centuries]
107 - 60-60-24-365.25-100  10°-102-10%-102-10%-102 1020

liczba ns in 1 century
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Minsky’s remarks

On search problems:
@ Minsky: Technological improvements of computers does not lead to solution of all problems.

@ Minsky: Wise algorithms are more needed, that would be directed to searching more promising
states in first order and discarding less promising ones.

@ Minsky: Every technique (or a heuristic) which can potentially reduce the search is valuable.
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Minsky’s remarks

Generally on the development of Al as a domain:

Minsky: We should believe, that sooner or later we shall be able to create complex
programmes, equipped with combinations of heuristics, recurrences, image processing
techniques, etc.

Minsky: One should not try to see true intelligence in them. It is rather a matter of
esthetics than science.

Minsky: Every machine capable of ideal 100% introspection (self-awareness) must
conclude it is only a machine.

Minsky: Introduction of a body/mind duality on the grounds of psychology, sociology etc. is
actually only implied by the fact that our currently known mechanical model of the brain is not
complete.

Minsky: At the low mechanical level (or digital-like level) all we have is simple rules: ,if .. . then

. — it is hard to be excited by this. Similarly in mathematics, as soon as the proof for a theorem
becomes understood, the contents of the theorem seems trivial.
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