A Genetic Algorithm for Function Optimization: A
Matlab Implementation

Christopher R. Houck

North Carolina State University
and

Jeffery A. Joines

North Carolina State University
and

Michael G. Kay

North Carolina State University

A genetic algorithm implemented in Matlab is presented. Matlab is used for the following reasons:
it provides many built in auxiliary functions useful for function optimization; it is completely
portable; and it is efficient for numerical computations. The genetic algorithm toolbox developed
is tested on a series of non-linear, multi-modal, non-convex test problems and compared with
results using simulated annealing. The genetic algorithm using a float representation is found to
be superior to both a binary genetic algorithm and simulated annealing in terms of efficiency and
quality of solution. The use of genetic algorithm toolbox as well as the code is introduced in the
paper.

Categories and Subject Descriptors: G.1 [Numerical Analysis]: Optimization— Unconstrained
Optimization, nonlinear programming, gradient methods

General Terms: Optimization, Algorithms

Additional Key Words and Phrases: genetic algorithms, multimodal nonconvex functions, Matlab

1. INTRODUCTION

Algorithms for function optimization are generally limited to convex regular func-
tions. However, many functions are multi-modal, discontinuous, and nondifferen-

Name: Christopher R. Houck

Address: North Carolina State University, Box 7906, Raleigh, NC, 27695-7906,USA,(919) 515-
5188,(919) 515-1543,chouck@eos.ncsu.edu

Affiliation: North Carolina State University

Name: Jeffery A. Joines

Address: North Carolina State University, Box 7906, Raleigh, NC, 27695-7906,USA,(919) 515-
5188,(919) 515-1543,jjoine@eos.ncsu.edu

Affiliation: North Carolina State University

Name: Michael G. Kay

Address: North Carolina State University, Box 7906, Raleigh, NC, 27695-7906,USA,(919) 515-
2008,(919) 515-1543 kay@eos.ncsu.edu

Affiliation: North Carolina State University

Sponsor: This research was funded in part by the National Science Foundation under grant num-
ber DMI-9322834.

2 . C. Houck et al.

tiable. Stochastic sampling methods have been used to optimize these functions.
Whereas traditional search techniques use characteristics of the problem to deter-
mine the next sampling point (e.g., gradients, Hessians, linearity, and continuity),
stochastic search techniques make no such assumptions. Instead, the next sampled
point(s) is(are) determined based on stochastic sampling/decision rules rather than
a set of deterministic decision rules.

Genetic algorithms have been used to solve difficult problems with objective
functions that do not possess “nice” properties such as continuity, differentiability,
satisfaction of the Lipschitz Condition, etc.[Davis 1991; Goldberg 1989; Holland
1975; Michalewicz 1994]. These algorithms maintain and manipulate a family, or
population, of solutions and implement a “survival of the fittest” strategy in their
search for better solutions. This provides an implicit as well as explicit parallelism
that allows for the exploitation of several promising areas of the solution space at
the same time. The implicit parallelism is due to the schema theory developed by
Holland, while the explicit parallelism arises from the manipulation of a population
of points—the evaluation of the fitness of these points is easy to accomplish in
parallel.

Section 2 presents the basic genetic algorithm, and in Section 3 the GA is tested
on several multi-modal functions and shown to be an efficient optimization tool.
Finally, Section 4 briefly describes the code and presents the list of parameters of
the Matlab implementation.

2. GENETIC ALGORITHMS

Genetic algorithms search the solution space of a function through the use of sim-
ulated evolution, i.e., the survival of the fittest strategy. In general, the fittest
individuals of any population tend to reproduce and survive to the next genera-
tion, thus improving successive generations. However, inferior individuals can, by
chance, survive and also reproduce. Genetic algorithms have been shown to solve
linear and nonlinear problems by exploring all regions of the state space and ex-
ponentially exploiting promising areas through mutation, crossover, and selection
operations applied to individuals in the population [Michalewicz 1994]. A more
complete discussion of genetic algorithms, including extensions and related topics,
can be found in the books by Davis [Davis 1991], Goldberg [Goldberg 1989], Hol-
land[Holland 1975], and Michalewicz [Michalewicz 1994]. A genetic algorithm (GA)
i1s summarized in Fig. 1, and each of the major components is discussed in detail
below.

(1) Supply a population Py of N individuals and respective function values.
(2) 11

(3) P! «— selection_function(P; — 1)

(4) P < reproduction_function(P/)

(5) evaluate(P;)

(6) t—1+1

(7) Repeat step 3 until termination

(8) Print out best solution found

Fig. 1. A Simple Genetic Algorithm

A GA for function optimization . 3

The use of a genetic algorithm requires the determination of six fundamental
issues: chromosome representation, selection function, the genetic operators making
up the reproduction function, the creation of the initial population, termination
criteria, and the evaluation function. The rest of this section describes each of
these issues.

2.1 Solution Representation

For any GA, a chromosome representation is needed to describe each individual in
the population of interest. The representation scheme determines how the problem
is structured in the GA and also determines the genetic operators that are used.
Each individual or chromosome is made up of a sequence of genes from a certain
alphabet. An alphabet could consist of binary digits (0 and 1), floating point num-
bers, integers, symbols (i.e., A, B, C, D), matrices, etc. In Holland’s original design,
the alphabet was limited to binary digits. Since then, problem representation has
been the subject of much investigation. It has been shown that more natural repre-
sentations are more efficient and produce better solutions[Michalewicz 1994]. One
useful representation of an individual or chromosome for function optimization in-
volves genes or variables from an alphabet of floating point numbers with values
within the variables upper and lower bounds. Michalewicz[Michalewicz 1994] has
done extensive experimentation comparing real-valued and binary GAs and shows
that the real-valued GA is an order of magnitude more efficient in terms of CPU
time. He also shows that a real-valued representation moves the problem closer
to the problem representation which offers higher precision with more consistent
results across replications. [Michalewicz 1994)

2.2 Selection Function

The selection of individuals to produce successive generations plays an extremely
important role in a genetic algorithm. A probabilistic selection is performed based
upon the individual’s fitness such that the better individuals have an increased
chance of being selected. An individual in the population can be selected more
than once with all individuals in the population having a chance of being selected
to reproduce into the next generation. There are several schemes for the selection
process: roulette wheel selection and its extensions, scaling techniques, tournament,
elitist models, and ranking methods [Goldberg 1989; Michalewicz 1994].

A common selection approach assigns a probability of selection, P;, to each indi-
vidual, j based on its fitness value. A series of N random numbers is generated and
compared against the cumulative probability, C; = Z}Il P;, of the population.
The appropriate individual, ¢, 1s selected and copied into the new population if
Ci—1 < U(0,1) < C;. Various methods exist to assign probabilities to individuals:
roulette wheel, linear ranking and geometric ranking.

Roulette wheel, developed by Holland [Holland 1975], was the first selection
method. The probability, P;, for each individual 1s defined by:

F;
P[Individual i is chosen | = P (1)
Z]’:l Fj

where F; equals the fitness of individual ¢. The use of roulette wheel selection limits

4 . C. Houck et al.

the genetic algorithm to maximization since the evaluation function must map the
solutions to a fully ordered set of values on *T. Extensions, such as windowing and
scaling, have been proposed to allow for minimization and negativity.

Ranking methods only require the evaluation function to map the solutions to
a partially ordered set, thus allowing for minimization and negativity. Ranking
methods assign P; based on the rank of solution ¢ when all solutions are sorted.
Normalized geometric ranking, [Joines and Houck 1994], defines P; for each indi-
vidual by:

P[Selecting the ith individual] = ¢/(1 —¢)"™%; (2)
where:

g = the probability of selecting the best individual,

r = the rank of the individual, where 1 is the best.

P = the population size

¢ = i

Tournament selection, like ranking methods, only requires the evaluation function
to map solutions to a partially ordered set, however, it does not assign probabilities.
Tournament selection works by selecting j individuals randomly, with replacement,
from the population, and inserts the best of the j into the new population. This
procedure is repeated until N individuals have been selected.

2.3 Genetic Operators

Genetic Operators provide the basic search mechanism of the GA. The operators are
used to create new solutions based on existing solutions in the population. There
are two basic types of operators: crossover and mutation. Crossover takes two
individuals and produces two new individuals while mutation alters one individual
to produce a single new solution. The application of these two basic types of
operators and their derivatives depends on the chromosome representation used.

Let X and Y be two m-dimensional row vectors denoting individuals (parents)
from the population. For X and Y binary, the following operators are defined:
binary mutation and simple crossover.

Binary mutation flips each bit in every individual in the population with proba-
bility p,, according to equation 3.

x;:{l—xi, if U(0,1) < pm 3)

x;, otherwise

Simple crossover generates a random number r from a uniform distribution from
1 to m and creates two new individuals (X and Y”) according to equations 4 and 5.

, o ifi<r

Ti = {yi, otherwise (4)
P I T i R &

Yi = {l‘i, otherwise (%)

Operators for real-valued representations, i.e., an alphabet of floats, were de-
veloped by Michalewicz [Michalewicz 1994]. For real X and Y, the following op-

A GA for function optimization . 5

erators are defined: uniform mutation, non-uniform mutation, multi-non-uniform
mutation, boundary mutation, simple crossover, arithmetic crossover, and heuris-
tic crossover. Let a; and b; be the lower and upper bound, respectively, for each
variable ¢.

Uniform mutation randomly selects one variable, j, and sets it equal to an uniform
random number U (a;, b;):

X, otherwise

x;:{U(ai,bi), ifi=j (6)

Boundary mutation randomly selects one variable, j, and sets it equal to either
its lower or upper bound, where » = U(0, 1):

a;, ifi=j4,r<0.5
zi=4(b, fi=jr>05 (7)
x;, otherwise

Non-uniform mutation randomly selects one variable, j, and sets it equal to an
non-uniform random number:

x; + (bl - l‘l)f(G) if ri < 0.5,
x; = T, — (l‘Z + al)f(G) ifry > 0.5, (8)

X, otherwise

where

)", 9)

71,72 = a uniform random number between (0,1),

F(G) = (r(1- 55

max

G = the current generation,
Gmar = the maximum number of generations,

b = a shape parameter.

The multi-non-uniform mutation operator applies the non-uniform operator to
all of the variables in the parent X.

Real-valued simple crossover is identical to the binary version presented above
in equations 4 and 5. Arithmetic crossover produces two complimentary linear
combinations of the parents, where » = U(0, 1):

X =rX4+(1-r)Y (10)
Y = (1=r)X+rY (11)

Heuristic crossover produces an linear extrapolation of the two individuals. This
is the only operator that utilizes fitness information. A new individual, X', is
created using equation 12, where » = U(0,1) and X is better than Y in terms of
fitness. If X’ is infeasible, i.e., feasibility equals 0 as given by equation 14, then
generate a new random number r and create a new solution using equation 12,
otherwise stop. To ensure halting, after ¢ failures, let the children equal the parents
and stop.

6 . C. Houck et al.

1, if &} > a;, 2} < b; Vi
0, otherwise

feasibility = {

2.4 Initialization, Termination, and Evaluation Functions

The GA must be provided an initial population as indicated in step 1 of Fig. 1.
The most common method is to randomly generate solutions for the entire popula-
tion. However, since GAs can iteratively improve existing solutions (i.e., solutions
from other heuristics and/or current practices), the beginning population can be
seeded with potentially good solutions, with the remainder of the population being
randomly generated solutions.

The GA moves from generation to generation selecting and reproducing parents
until a termination criterion is met. The most frequently used stopping criterion is
a specified maximum number of generations. Another termination strategy involves
population convergence criteria. In general, GAs will force much of the entire pop-
ulation to converge to a single solution. When the sum of the deviations among
individuals becomes smaller than some specified threshold, the algorithm can be
terminated. The algorithm can also be terminated due to a lack of improvement
in the best solution over a specified number of generations. Alternatively, a tar-
get value for the evaluation measure can be established based on some arbitrarily
“acceptable” threshold. Several strategies can be used in conjunction with each
other.

Evaluation functions of many forms can be used in a GA, subject to the minimal
requirement that the function can map the population into a partially ordered set.
As stated, the evaluation function is independent of the GA (i.e., stochastic decision
rules).

3. TESTING AND CONCLUSIONS

The Matlab implementation of the algorithm has been tested with respect to effi-
ciency and reliability by optimizing a family of multi-modal non-linear test prob-
lems. The family of test problems is taken from Corana, [Corana et al. 1987],
which compare the use of the simulated annealing algorithm to the simplex method
of Nelder-Mead and adaptive random search. In [Houck et al. 1995a] we report in
detail the effectiveness of the genetic algorithm for solving the continuous location-
allocation problem, and in [Houck et al. 1995b] on the use of the genetic algorithm in
conjunction with local-improvement heuristics for non-linear function optimization,
location-allocation, and the quadratic assignment problem.

The Corana family[Corana et al. 1987] of parameterized functions,q,,, are very
simple to compute and contain a large number of local minima. This function is
basically a n-dimensional parabola with rectangular pockets removed and where the
global minima occurs at the origin (0,0,...,0). This family is defined as follows:

A GA for function optimization . 7

Dy ={xeR":—a1 <1 <ay,...,—a, <, <ap;ac RNy}
d _ xEDf:klsl—t1<x1<Z€151+t1,...,knsn—tn<xn<kn5n—|—tn;
ke = ki,... kn€ Zit,s €Nt < Fi=1,...,n

Dy = U Ay, kn — doo,. 0

ki.. kn€2
D, = D; — D,,

an(x) = Zdix?, xeD,,de R,
i=1

(%) = Y dizl, xE€diy, g, (k1. ko) # 0,
i=1
kis; +t; if k; <0,
Z; = 0 if kz = 0,

kis; —t; i k; > 0,

For the optimization of the test function two different representations were used.
A real-valued alphabet was employed in conjunction with the selection, mutation
and crossover operators with their respective options as shown in table I. Also,
a binary representation was used in conjunction with the selection, mutation and
crossover operators with their respective options as shown in table II. A description
of the options for each of the functions is provided in the following section, Section 4.

Table I. GAOT Parameters used for Real-Valued Corana Function Optimization

Name Parameters
Uniform Mutation 4
Non-Uniform Mutation [4 Gmaz 3]
Multi-Non-Uniform Mutation [6 Gmaz 3]
Boundary Mutation 4

Simple Crossover 4
Arithmetic Crossover 4

Heuristic Crossover [2 3]
Normalized Geometric Selection | 0.08

Table II. GAOT Parameters used for Binary Corana Function Optimization

Name Parameters
Binary Mutation 0.05
Simple Crossover 0.6
Normalized Geometric Selection | 0.08

Two different evaluation functions were used for both the float and binary genetic
algorithm, the first simply returned the value of the Corana function at the point

8 . C. Houck et al.

as determined by the genetic string. The second evaluation function utilizes a Se-
quential Quadratic Programming (SQP) (available in Matlab) method to optimize
the Corana function starting from the point as determined by the genetic string.
This provides the genetic algorithm with a local improvement operator which, as
shown in [Houck et al. 1995b], can greatly enhance the performance of the genetic
algorithm. Many researchers have shown that GAs perform well for a global search
but perform very poorly in a localized search [Davis 1991; Michalewicz 1994; Houck
et al. 1995a; Bersini and Renders 1994]. GAs are capable of quickly finding promis-
ing regions of the search space but may take a relatively long time to reach the
optimal solution.

Both the float genetic algorithm (FGA) and binary genetic algorithm (BGA) were
run 10 times with different random seeds. The simulated annealing (SA) results
are taken from the 10 replications of these test problems reported in [Corana et al.
1987]. The resulting solution value found and the number of function evaluations
to obtain that solution are shown in Table III. Since Corana et al. did not use
an improvement procedure, both the FGA and BGA were run without the use of
SQP. As shown in the table, the FGA outperformed both BGA and SA in terms
of computational efficiency and solution quality. With respect to the epsilon of
le=5 as used in [Corana et al. 1987], FGA found the optimal in all three cases
in all replications, while SA was unable to find the optimal two times for the 4
dimensional case and not at all for the 10 dimensional case. The table also shows
that the use of the local improvement operator significantly increases the power of
the genetic algorithm in terms of solution quality and speed of convergence to the
optimal.

Table III. Solution Quality and Procedure Efficiency

. Std. of . Avg. Std. Min
Dim. Method Avg Sol. Sol. Min. Sol. of gva?l% of evj. of evj.
FGA 5.75e~7 2.87e~7 2.09e~7 | 6.90eT? | 1.33et3 | 5.87¢t3
FGA-SQP | 0.00et0 0.00et0 0.00eT0 | 6.02¢F2 | 1.89¢T2 | 3.95¢1?
2 BGA 4.51e=7 3.40e~7 3.31e~8 9.60eT? | 3.56eT3 | 4.56eT3
BGA-SQP | 8.45¢= 1% | 2.67¢~1° | 5.40e=7° | 8.48eT? | 2.61¢t2 | 6.03 + 2
SA 1.13¢78 1.42¢78 4.21e719 | 6.89¢T5 | 1.73eT% | 6.56eT>
FGA 6.80e~7 3.35e7 1.58¢=7 | 1.06eT> | 5.56et? | 4.81et%
FGA-SQP | 0.00eT? 0.00eT0 0.00eT0 3.76eT3 | 1.27etT2 | 1.66eT7
4 BGA 5.34e~7 2.99e~7 3.567e=% | 3.07eT® | 7.25eT% | 1.93eT°
BGA-SQP | 2.53e77? 7.71e7? 6.80e7 2% | 3.32¢FT | 1.78eTT | 1.32¢T%
SA 6.18¢—* 1.40e=3 8.70e—8 1388 | 1.11eF5 | 1.18¢16
FGA 6.15¢~7 | 4.01e~" 1.68¢—8 | 2.31eT® | 3.06et® | 1.77¢T?
FGA-SQP | 0.00eT? 0.00eT0 0.00eT0 5.38¢T% | 3.29¢F* | 3.80eTF?
10 BGA 1.74eF2 1.85eT2 2.29¢F1T 1.47eT8 | 6.96eT% | 1.34¢16
BGA-SQP | 5.74¢7T2 1.09¢¥3 4,230 8.26eT2 | 1.63eT2 | 5.27¢T2
SA 5.40e—* 0.00et0 5.40e—* 1.62eT8 | 3.65eT% | 1.55¢16

The results of this testing show that the use of genetic algorithms for func-
tion optimization is highly efficient and effective. The use of a local improvement

A GA for function optimization . 9

procedure, in this case SQP, can greatly enhance the performance of the genetic
algorithm.

4. GAOT: A MATLAB IMPLEMENTATION

Matlab is a technical computing environment for high-performance numeric com-
putation. Matlab integrates numerical analysis, matrix computation and graphics
in an easy-to-use environment. User-defined Matlab functions are simple text files
of interpreted instructions. Therefore, Matlab functions are completely portable
from one hardware architecture to another without even a recompilation step.

The algorithm discussed in Section 2 has been implemented as a Matlab toolbox,
i.e., a group of related functions, named GAOT, Genetic Algorithms for Optimiza-
tion Toolbox. Each module of the algorithm is implemented using a Matlab func-
tion. This provides for easy extensibility, as well as modularity. The basic function
is the ga function, which runs the simulated evolution. The basic call to the ga
function is given by the following Matlab command.

[x,endPop,bPop,tracelnfo] = ga(bounds ,evalFN,evalParams,params,startPop,...
termFN,termParams,selectFN,selectParams,x0verFlis,x0OverParams ,mutFNs ,mutParams)

Output parameters

—u 1s the best solution string, i.e. final solution,

—endPop(optional) is the final population,

—bPop(optional) is a matrix of the best individuals and the corresponding gener-
ation they were found,

—tracelnfo(optional) is a matrix of maximum and mean functional value of the
population for each generation.

Input parameters

—bounds is a matrix of upper and lower bounds on the variables,
—evalF N is the evaluation function, usually a .m file,

—evalParams(optional) is a row matrix of any parameters to the evaluation func-
tion defaults to [NULI],

—params(optional) is a vector of options, i.e. [epsilon prob_param disp_param]
where epsilon is the change required to consider two solutions different and
prob_params is 0 if you want to use the binary version of the algorithm, or 1
for the float version. disp_param controls the display of the progress of the algo-
rithm, 1 displays the current generation and the the value of the best solution
in the population, while 0 prevents any output during the run. This parameter
defaults to [1e=% 1 0].

—startPop(optional) is a matrix of solutions and their respective functional values.
The starting population defaults to a randomly created population created with
initialize,

—termFN(optional) is the name of the termination function which defaults to
['mazGenTerm]|,

—termParams(optional) is a row matrix of parameters which defaults to [100],

10 . C. Houck et al.

—selectF'N(optional) is the name of the selection function which defaults to [’nor-
mGeomSelect’],
—selectParams(optional) is a row matrix of parameters for the selection function

which defaults to [0.08],

—az0verFNs(optional) is a blank separated string of the names of the cross-over
functions which defaults to [’arithXover heuristicXover simple Xover’] for the float
version and [’simpleXover] for the binary version.

—azQOverParams(optional) is a matrix of the crossover parameters which default

to [2 0,2 3;2 0] for the float version and [0.6] for the binary
—mutFNs(optional) is a blank separated string of mutation operators which de-

fault to [’boundaryMutation multiNon UnifMutation nonUnifMutation unifMuta-

tion]] for the float version and [’binaryMutation’] for the binary version.
—mutParams(optional) is a matrix of mutation parameters which defaults to [4

0;6 100 3;4 100 3;4 0] for the float version and [0.05] for the binary.

GA performs the simulated evolution using the evalF'N to determine the fitness
of the solution strings. The GA uses the operators 2OverFNs and mutFNs to alter
the solution strings during the search. The program has been run successfully on a
DecStation 3100, a DecStation 5000/25, Motorolla 604 and an HP 715.

The system maintains a high degree of modularity and flexibility as a result of
the decision to pass the selection, evaluation, termination functions to the GA as
well as a list of genetic operators. Thus, the base genetic algorithm is able to per-
form evolution using any combination of selection, crossover, mutation, evaluation
and termination functions that conform to the functional specifications as outlined
below or can easily be used with the default parameters.

4.1 Evaluation Function

The evaluation function is the driving force behind the GA. The evaluation function
is called from the GA to determine the fitness of each solution string generated
during the search. An example evaluation function is given below:

function [x, vall = gaDemolEval(x,parameters)
val = x(1) + 10*sin(5*x(1))+7*cos(4*x(2));

To run the ga using this test function use either of the following function calls from
Matlab.

bstX = ga([0 10; 0 -10],’gaDemolEval’)
bstX = ga([0 10; 0 -10],°x(1) + 10*sin(5*x(1))+7*cos(4*x(2))’);

where gaDemolEval.mis contains the evaluation function as given above. Usually,
a .m file will be more convenient to use as the evaluation function will be more
complex than the simple example provided. This function call will use all of the
default parameters of the ga and return only the best solution found during the
course of the simulated evolution.

Note that the evaluation function must take two parameters, z and options. =
is a row vector of n 4+ 1 elements where the first n elements are the parameters of
interest. The n + 1’th element is the value of this solution. The parameters matrix
i1s a row matrix of

A GA for function optimization . 11

[current_generation, evalParams]

The evaluation function must return both the value of the string, val and the string
itself, z. This is done so that an evaluation can repair or improve the string if
desired. This allows for the use of local improvement procedures as discussed in
Section 3.

An evaluation function is unique to the optimization of the problem at hand
therefore, every time the ga is used for a different problem, an evaluation function
must be developed to determine the fitness of the individuals.

The remainder of this section describes the other modules of the genetic toolbox.
While GAOT allows for easy modification of any of these modules, the defaults as
given work well for a wide class of optimization problems as shown in [Houck et al.

1995b].

4.2 Operator Functions

Operators provide the search mechanism of the GA. The operators are used to
create new solutions based on existing solutions in the population. There are two
basic types of operators, crossover and mutation. Crossover takes two individuals
and produces two new individuals while mutation alters one individual to produce
a single new solution. The ga function calls each of the operators to produce new
solutions. The function call for crossovers is as follows:

[c1,c2] = crossover(pl,p2,bounds,params)

where p1 is the first parent, [solution_string function_value], p2 is the second par-
ent, bounds is the bounds matrix for the solution space and params is the vector
of [current generalion, operatorParams], where operatorParams is the appropriate
row of parameters for this crossover/mutation operator. The first value of the op-
eratorParams is frequency of application of this operator. For the float ga, this is
the discrete number of times to call this operator every generation, while for the
binary ga 1t is the probability of application to each member of the population.
The mutation function call is similar, but only takes one parent and returns one

child:
[c1] = mutation(pl,bounds,params)

The crossover operator must take all four arguments, the two parents, the bounds
of the search space, the information on how much of the evolution has taken place
and any other special options required. Similarly, mutations must all take the
three arguments and return the resulting child. Table IV shows the operators im-
plemented in Matlab, their corresponding file names, and any options that the
operator takes in addition to the first option, the number of applications per gen-
eration.

4.3 Selection Function

The selection function determines which of the individuals will survive and continue
on to the next generation. The ga function calls the selection function each gener-
ation after all the new children have been evaluated to create the new population
from the old one.

The basic function call used in ga for selection is:

12 C. Houck et al.

Table IV.

Matlab Implemented Operator Functions

Name

File

Options

Arithmetic Crossover
Heuristic Crossover
Simple Crossover
Boundary Mutation

Non-Uniform Mutation

Uniform Mutation

Multi-Non-Uniform Mutation

arithXover.m
heuristicXover.m
simpleXover.m
boundary.m
multiNonUnifMut.m
nonUnifMut.m
unifMut.m

none

number of retries (t)

none

none

max num of generations, shape parameter (b)
max num of generations, shape parameter (b)

none

[newPop] =

selectFunction(oldPop,options)

where newPop is the new population selected, oldPop is the current population,

and options is a vector for any other optional parameters.

Notice that all selection routines must take both parameters, the old population
from which to select members from, and any specific options to that particular

selection routine. The function must return the new population. Table V shows
the selection routines that have been implemented in GAOT. The file names are
provided, as they are the function names to be used in Matlab, and the options for
each function is also provided.

Table V.

Matlab Implemented Selection Functions

Name

File

Options

Roulette Wheel

Normalized Geometric Select

Tournament

roulette.m
normGeomSelect.m

tourn.m

None
Probability of Selecting Best
Number of individuals in each tournament

4.4 |nitialization and Termination Functions

Initialization of a population to provide the ga a starting point is usually done by
generating random strings within the search space, and this is the default behavior
of the ga function. However, it is possible to ’seed’ the initial population with
individuals, or generate solutions in some other form. The ga allows for this with

the optional startPop parameter which provides the ga with an explicit starting

population.

The termination function determines when to stop the simulated evolution and

return the resulting population. The ga function calls the termination function

once every generation after the application of all of the operator functions and the
evaluation function for the resulting children. The function call is of the format:

done =

terminateFunction(options,bestPop,pop)

where options 1s a vector of termination options the first of which is always the

current generation. bestPop is a matrix of the best individuals and the respective

generation it was found. pop is the current population. Table VI shows the termi-
nation routines that have been implemented in GAOT. The file names are provided

A GA for function optimization . 13

as they are the function names to be used in Matlab, and the options for each
function is also provided.

Table VI. Matlab Implemented Termination Functions

Name File Options

Terminate at Specified Generation | maxGenTerm.m final generation

Terminate at Optimal or max gen | maxGenOptTerm.m | final generation, optimal value, epsilon

4.5 Online Tutorial

Several Matlab demos are provided as a tutorial to the genetic algorithm toolbox.
The first demo, gademol, gives a brief introduction to GAs using a simple one
variable function. The second demo, gademo2, uses a more complicated example,
the 4-dimensional Corana function, to further illustrate the use of the toolbox. The
final demo, gademo3, is a reference to the format used for the operator, selection,
evaluation, and termination functions.

5. SUMMARY

A genetic algorithm capable of either using a floating point representation or a
binary representation has been implemented as a Matlab toolbox. This toolbox
provides a modular, extensible, portable algorithm in an environment rich in math-
ematical capabilities. The toolbox has been tested on a series of non-linear, non-
convex, multi-modal functions. The results of these tests show that the algorithm
is capable of finding better solutions with less function evaluations than simulated
annealing.

REFERENCES

BEeRsINI, H. AND RENDERS, B. 1994. Hybridizing genetic algorithms with hill-climbing meth-
ods for global optimization: Two possible ways. In 1994 IFEE International Symposium
Evolutionary Computation, Orlando, Fl, pp. 312-317.

CoORANA, A., MARCHESI, M., MARTINI, C., AND RIDELLA, S. 1987. Minimizing multimodal func-
tions of continuous variables with the “simulated annealing” algorithm. A CM Transactions
on Mathematical Software 13, 3, 262—280.

Davis, L. 1991. The Handbook of Genetic Algorithms. Van Nostrand Reingold, New York.

GOLDBERG, D. 1989. Genetic Algorithms wn Search, Optimization, and Machine Learning.
Addison-Wesley.

HoLLAND, J. 1975. Adaptation in naturel and artificial systems. The University of Michigan
Press, Ann Arbor.

Houck, C., JoiNgs, J., aND Kay, M. 1995a. A comparison of genetic algorithms, random
restart, and two-opt switching for solving large location-allocation problems. Computers €
Operations Research forthcoming in special issue on evolution computation.

Houck, C., JoiNgs, J., AND KAy, M. 1995b. The effective use of local improvement procedures
in conjunction with genetic algorithms. Technical Report NCSU-IE Technical Report 95,
North Carolina State University.

JoinEs, J. AND Houck, C. 1994. On the use of non-stationary penalty functions to solve con-
strained optimization problems with genetic algorithms. In 199/ IEEFE International Sym-
posium FEvolutionary Computation, Orlando, Fl, pp. 579-584.

14 . C. Houck et al.

MICHALEWICZ, Z. 1994. Genetic Algorithms + Data Structures = FEwvolution Programs. Al
Series. Springer-Verlag, New York.

